Multi-epoch X-ray burst modelling: MCMC with large grids of 1D simulations

被引:26
作者
Johnston, Zac [1 ,2 ,3 ]
Heger, Alexander [1 ,2 ,4 ,5 ]
Galloway, Duncan K. [1 ,2 ]
机构
[1] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[2] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia
[3] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[4] Shanghai Jiao Tong Univ, Dept Astron, Shanghai 200240, Peoples R China
[5] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
methods: numerical; stars: individual: GS 1826-238; stars: neutron; X-rays: bursts; THERMONUCLEAR BURSTS; NEUTRON-STAR; EVOLUTION; GS-1826-24; FLASHES;
D O I
10.1093/mnras/staa1054
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Type-I X-ray bursts are recurring thermonuclear explosions on the surface of accreting neutron stars. Matching observed bursts to computational models can help to constrain system properties, such as the neutron star mass and radius, crustal heating rates, and the accreted fuel composition, but systematic parameter studies to date have been limited. We apply Markov chain Monte Carlo methods to 1D burst models for the first time, and obtain system parameter estimations for the `Clocked Burster', GS 1826-238, by fitting multiple observed epochs simultaneously. We explore multiple parameters which are often held constant, including the neutron star mass, crustal heating rate, and hydrogen composition. To improve the computational efficiency, we precompute a grid of 3840 KEPLER models - the largest set of 1D burst simulations to date - and by interpolating over the model grid, we can rapidly sample burst predictions. We obtain estimates for a CNO metallicity of Z(CNO) = 0.010(-0.004)(+0.005), a hydrogen fraction of X-0 = 0.74(-0.03)(+0.02), a distance of d root xi b = 6.5(-06)(+0.4) kpc, and a system inclination of i = 69(-3)(+2)degrees.
引用
收藏
页码:4576 / 4589
页数:14
相关论文
共 61 条
[1]  
[Anonymous], APJ
[2]  
[Anonymous], 2016, Journal of Open Source Software, V1, P45, DOI [10.21105/joss.00045, DOI 10.21105/JOSS.00045, 10.21105/ joss.00045]
[3]  
[Anonymous], 2018, APJ, DOI DOI 10.3847/1538-4357/AAC3D3
[4]   Fast and slow magnetic deflagration fronts in type I X-ray bursts [J].
Cavecchi, Yuri ;
Levin, Yuri ;
Watts, Anna L. ;
Braithwaite, Jonathan .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 459 (02) :1259-1275
[5]  
CHENEVEZ J, 2016, APJ, V818, DOI DOI 10.3847/0004-637X/818/2/135
[6]   Rotational evolution during Type I X-ray bursts [J].
Cumming, A ;
Bildsten, L .
ASTROPHYSICAL JOURNAL, 2000, 544 (01) :453-474
[7]   Models of type I X-ray bursts from 4U 1820-30 [J].
Cumming, A .
ASTROPHYSICAL JOURNAL, 2003, 595 (02) :1077-1085
[8]   Long type I X-ray bursts and neutron star interior physics [J].
Cumming, Andrew ;
Macbeth, Jared ;
Zand, J. J. M. In't ;
Page, Dany .
ASTROPHYSICAL JOURNAL, 2006, 646 (01) :429-451
[9]   THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS [J].
Cyburt, Richard H. ;
Amthor, A. Matthew ;
Ferguson, Ryan ;
Meisel, Zach ;
Smith, Karl ;
Warren, Scott ;
Heger, Alexander ;
Hoffman, R. D. ;
Rauscher, Thomas ;
Sakharuk, Alexander ;
Schatz, Hendrik ;
Thielemann, F. K. ;
Wiescher, Michael .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2010, 189 (01) :240-252
[10]   Computing fast and reliable gravitational waveforms of binary neutron star merger remnants [J].
Easter, Paul J. ;
Lasky, Paul D. ;
Casey, Andrew R. ;
Rezzolla, Luciano ;
Takami, Kentaro .
PHYSICAL REVIEW D, 2019, 100 (04)