THE GENUINE OPERADIC NERVE

被引:0
作者
Bonventre, Peter [1 ]
机构
[1] Univ Kentucky, Dept Math, 715 Patterson Off Tower, Lexington, KY 40506 USA
来源
THEORY AND APPLICATIONS OF CATEGORIES | 2019年 / 34卷
关键词
infinity operads; equivariant operads; symmetric monoidal categories; DENDROIDAL SETS; HOMOTOPY-THEORY; MODELS; CATEGORIES; COMPLEXES; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a generalization of the operadic nerve, providing a translation between the equivariant simplicially enriched operadic world to the parametrized infinity-categorical perspective. This naturally factors through genuine equivariant operads, a model for "equivariant operads with norms up to homotopy". We introduce the notion of an op-fibration of genuine equivariant operads, extending Grothendieck op-fibrations, and characterize fibrant operads as the image of genuine equivariant symmetric monoidal categories. Moreover, we show that under the operadic nerve, this image is sent to G-symmetric monoidal G-infinity-categories. Finally, we produce a functor comparing the notion of algebra over an operad in each of these two contexts.
引用
收藏
页码:736 / 780
页数:45
相关论文
共 39 条
[1]  
Barwick C., ARXIV160803654
[2]   From operator categories to higher operads [J].
Barwick, Clark .
GEOMETRY & TOPOLOGY, 2018, 22 (04) :1893-1959
[3]   The enriched Grothendieck construction [J].
Beardsley, Jonathan ;
Wong, Liang Ze .
ADVANCES IN MATHEMATICS, 2019, 344 :234-261
[4]   G-symmetric monoidal categories of modules over equivariant commutative ring spectra [J].
Blumberg, Andrew J. ;
Hill, Michael A. .
TUNISIAN JOURNAL OF MATHEMATICS, 2020, 2 (02) :237-286
[5]   Incomplete Tambara functors [J].
Blumberg, Andrew J. ;
Hill, Michael A. .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (02) :723-766
[6]   Operadic multiplications in equivariant spectra, norms, and transfers [J].
Blumberg, Andrew J. ;
Hill, Michael A. .
ADVANCES IN MATHEMATICS, 2015, 285 :658-708
[7]  
Boardman Michael J., 1973, LECT NOTES MATH, V347
[8]  
Bonventre P., ARXIV170702226
[9]  
Bonventre P., COHERENCE GENU UNPUB
[10]  
Bonventre P., NEW MODELS COM UNPUB