Triboelectric nanogenerator for Mars environment

被引:53
作者
Seol, Myeong-Lok [1 ]
Han, Jin-Woo [1 ]
Moon, Dong-Il [1 ]
Meyyappan, M. [1 ]
机构
[1] NASA, Ctr Nanotechnol, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
Triboelectric nanogenerator; Mars; Atmosphere; Temperature; Ultraviolet; Space; CONTACT ELECTRIFICATION; PRESSURE; SURFACE; RADIATION; GENERATOR; PARTICLE; IMPACTS; MISSION; METALS; ENERGY;
D O I
10.1016/j.nanoen.2017.07.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Consistent and reliable power supply is critical for interplanetary exploration missions and habitats on Mars. Abundant wind, strong dust storms and surface vibrations on Mars are attractive mechanical sources to convert into electrical energy. Conventional electromagnetic generators are unsuitable for planetary exploration due to the heavy weight of permanent magnets and metal coils and high launch costs. Triboelectric nanogenerator (TENG) yielding high output power per mass is a potential alternative. The impact of Mars environment on triboelectricity generation is an unknown but critical issue, which is investigated here using a Mars analogue weather chamber. Individual and combined effects of environmental factors such as atmospheric pressure, atmospheric composition, temperature, ultraviolet and gamma radiations on the performance of TENG are analyzed. The potential of TENG for Mars exploration is addressed based on the experimental results and scientific implication.
引用
收藏
页码:238 / 244
页数:7
相关论文
共 50 条
  • [1] All-printed triboelectric nanogenerator
    Seol, Myeong-Lok
    Han, Jin-Woo
    Moon, Dong-Il
    Yoon, Kyung Jean
    Hwang, Cheol Seong
    Meyyappan, M.
    NANO ENERGY, 2018, 44 : 82 - 88
  • [2] Effect of humidity and pressure on the triboelectric nanogenerator
    Vu Nguyen
    Yang, Rusen
    NANO ENERGY, 2013, 2 (05) : 604 - 608
  • [3] Temperature Effect on Performance of Triboelectric Nanogenerator
    Lu, Cun Xin
    Han, Chang Bao
    Gu, Guang Qin
    Chen, Jian
    Yang, Zhi Wei
    Jiang, Tao
    He, Chuan
    Wang, Zhong Lin
    ADVANCED ENGINEERING MATERIALS, 2017, 19 (12)
  • [4] Triboelectric nanogenerator based on degradable materials
    Chao, Shengyu
    Ouyang, Han
    Jiang, Dongjie
    Fan, Yubo
    Li, Zhou
    ECOMAT, 2021, 3 (01)
  • [5] Cylindrical spiral triboelectric nanogenerator
    Li, Xiao Hui
    Han, Chang Bao
    Zhang, Li Min
    Wang, Zhong Lin
    NANO RESEARCH, 2015, 8 (10) : 3197 - 3204
  • [6] Cylindrical Rotating Triboelectric Nanogenerator
    Bai, Peng
    Zhu, Guang
    Liu, Ying
    Chen, Jun
    Jing, Qingshen
    Yang, Weiqing
    Ma, Jusheng
    Zhang, Gong
    Wang, Zhong Lin
    ACS NANO, 2013, 7 (07) : 6361 - 6366
  • [7] Robust Multilayered Encapsulation for High-Performance Triboelectric Nanogenerator in Harsh Environment
    Zheng, Qiang
    Jin, Yiming
    Liu, Zhuo
    Ouyang, Han
    Li, Hu
    Shi, Bojing
    Jiang, Wen
    Zhang, Hao
    Li, Zhou
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (40) : 26697 - 26703
  • [8] Advances in high-temperature operatable triboelectric nanogenerator
    Cao, Ruirui
    Liu, Ying
    Li, Huilin
    Shen, Zhitao
    Li, Fumin
    Jia, Xiaoyong
    Chen, Chong
    Liu, Rong
    Luo, Caiqin
    Yang, Wensheng
    Bao, Rongrong
    Pan, Caofeng
    SUSMAT, 2024, 4 (03):
  • [9] Hysteretic behavior of contact force response in triboelectric nanogenerator
    Seol, Myeong-Lok
    Han, Jin-Woo
    Moon, Dong-Il
    Meyyappan, M.
    NANO ENERGY, 2017, 32 : 408 - 413
  • [10] Asymmetrical Triboelectric Nanogenerator with Controllable Direct Electrostatic Discharge
    Su, Zongming
    Han, Mengdi
    Cheng, Xiaoliang
    Chen, Haotian
    Chen, Xuexian
    Zhang, Haixia
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (30) : 5524 - 5533