From Cellular Infiltration Assessment to a Functional Gene Set-Based Prognostic Model for Breast Cancer

被引:6
作者
Li, Huamei [1 ]
Huang, Yiting [1 ]
Sharma, Amit [2 ,3 ]
Ming, Wenglong [1 ]
Luo, Kun [4 ]
Gu, Zhongze [1 ]
Sun, Xiao [1 ]
Liu, Hongde [1 ]
机构
[1] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Bioelect, Nanjing, Peoples R China
[2] Univ Hosp Bonn, Ctr Integrated Oncol CIO, Dept Neurosurg, Bonn, Germany
[3] Univ Hosp Bonn, Ctr Integrated Oncol CIO, Dept Integrated Oncol, Bonn, Germany
[4] Xinjiang Med Univ, Affiliated Hosp 1, Xinjiang Evidence Based Med Res Inst, Dept Neurosurg, Urumqi, Peoples R China
基金
中国国家自然科学基金;
关键词
breast cancer; specific gene expression profile; cellular infiltration; prognosis; risk score; immunotherapy; cancer heterogeneity; TUMORS REVEALS; DECONVOLUTION; CHEMOTHERAPY;
D O I
10.3389/fimmu.2021.751530
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background Cancer heterogeneity is a major challenge in clinical practice, and to some extent, the varying combinations of different cell types and their cross-talk with tumor cells that modulate the tumor microenvironment (TME) are thought to be responsible. Despite recent methodological advances in cancer, a reliable and robust model that could effectively investigate heterogeneity with direct prognostic/diagnostic clinical application remained elusive. Results To investigate cancer heterogeneity, we took advantage of single-cell transcriptome data and constructed the first indication- and cell type-specific reference gene expression profile (RGEP) for breast cancer (BC) that can accurately predict the cellular infiltration. By utilizing the BC-specific RGEP combined with a proven deconvolution model (LinDeconSeq), we were able to determine the intrinsic gene expression of 15 cell types in BC tissues. Besides identifying significant differences in cellular proportions between molecular subtypes, we also evaluated the varying degree of immune cell infiltration (basal-like subtype: highest; Her2 subtype: lowest) across all available TCGA-BRCA cohorts. By converting the cellular proportions into functional gene sets, we further developed a 24 functional gene set-based prognostic model that can effectively discriminate the overall survival (P = 5.9 x 10(-33), n = 1091, TCGA-BRCA cohort) and therapeutic response (chemotherapy and immunotherapy) (P = 6.5 x 10(-3), n = 348, IMvigor210 cohort) in the tumor patients. Conclusions Herein, we have developed a highly reliable BC-RGEP that adequately annotates different cell types and estimates the cellular infiltration. Of importance, the functional gene set-based prognostic model that we have introduced here showed a great ability to screen patients based on their therapeutic response. On a broader perspective, we provide a perspective to generate similar models in other cancer types to identify shared factors that drives cancer heterogeneity.
引用
收藏
页数:15
相关论文
共 52 条
[1]   Systematic pan-cancer analysis of tumour purity [J].
Aran, Dvir ;
Sirota, Marina ;
Butte, Atul J. .
NATURE COMMUNICATIONS, 2015, 6
[2]   Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment [J].
Azizi, Elham ;
Carr, Ambrose J. ;
Plitas, George ;
Cornish, Andrew E. ;
Konopacki, Catherine ;
Prabhakaran, Sandhya ;
Nainys, Juozas ;
Wu, Kenmin ;
Kiseliovas, Vaidotas ;
Setty, Manu ;
Choi, Kristy ;
Fromme, Rachel M. ;
Phuong Dao ;
McKenney, Peter T. ;
Wasti, Ruby C. ;
Kadaveru, Krishna ;
Mazutis, Linas ;
Rudensky, Alexander Y. ;
Pe'er, Dana .
CELL, 2018, 174 (05) :1293-+
[3]   Integrated analysis of single-cell RNA-seq and bulk RNA-seq unravels tumour heterogeneity plus M2-like tumour-associated macrophage infiltration and aggressiveness in TNBC [J].
Bao, Xuanwen ;
Shi, Run ;
Zhao, Tianyu ;
Wang, Yanfang ;
Anastasov, Natasa ;
Rosemann, Michael ;
Fang, Weijia .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2021, 70 (01) :189-202
[4]   A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer [J].
Bassez, Ayse ;
Vos, Hanne ;
Van Dyck, Laurien ;
Floris, Giuseppe ;
Arijs, Ingrid ;
Desmedt, Christine ;
Boeckx, Bram ;
Vanden Bempt, Marlies ;
Nevelsteen, Ines ;
Lambein, Kathleen ;
Punie, Kevin ;
Neven, Patrick ;
Garg, Abhishek D. ;
Wildiers, Hans ;
Qian, Junbin ;
Smeets, Ann ;
Lambrechts, Diether .
NATURE MEDICINE, 2021, 27 (05) :820-+
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers [J].
Berger, Ashton C. ;
Korkut, Anil ;
Kanchi, Rupa S. ;
Hegde, Apurva M. ;
Lenoir, Walter ;
Liu, Wenbin ;
Liu, Yuexin ;
Fan, Huihui ;
Shen, Hui ;
Ravikumar, Visweswaran ;
Rao, Arvind ;
Schultz, Andre ;
Li, Xubin ;
Sumazin, Pavel ;
Williams, Cecilia ;
Mestdagh, Pieter ;
Gunaratne, Preethi H. ;
Yau, Christina ;
Bowlby, Reanne ;
Robertson, A. Gordon ;
Tiezzi, Daniel G. ;
Wang, Chen ;
Cherniack, Andrew D. ;
Godwin, Andrew K. ;
Kuderer, Nicole M. ;
Rader, Janet S. ;
Zuna, Rosemary E. ;
Sood, Anil K. ;
Lazar, Alexander J. ;
Ojesina, Akinyemi I. ;
Adebamowo, Clement ;
Adebamowo, Sally N. ;
Baggerly, Keith A. ;
Chen, Ting-Wen ;
Chiu, Hua-Sheng ;
Lefever, Steve ;
Liu, Liang ;
MacKenzie, Karen ;
Orsulic, Sandra ;
Roszik, Jason ;
Shelley, Carl Simon ;
Song, Qianqian ;
Vellano, Christopher P. ;
Wentzensen, Nicolas ;
Weinstein, John N. ;
Mills, Gordon B. ;
Levine, Douglas A. ;
Akbani, Rehan .
CANCER CELL, 2018, 33 (04) :690-+
[7]   Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade [J].
Charoentong, Pornpimol ;
Finotello, Francesca ;
Angelova, Mihaela ;
Mayer, Clemens ;
Efremova, Mirjana ;
Rieder, Dietmar ;
Hackl, Hubert ;
Trajanoski, Zlatko .
CELL REPORTS, 2017, 18 (01) :248-262
[8]   Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer [J].
Chung, Woosung ;
Eum, Hye Hyeon ;
Lee, Hae-Ock ;
Lee, Kyung-Min ;
Lee, Han-Byoel ;
Kim, Kyu-Tae ;
Ryu, Han Suk ;
Kim, Sangmin ;
Lee, Jeong Eon ;
Park, Yeon Hee ;
Kan, Zhengyan ;
Han, Wonshik ;
Park, Woong-Yang .
NATURE COMMUNICATIONS, 2017, 8
[9]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352
[10]   Immune Infiltrates in Breast Cancer: Recent Updates and Clinical Implications [J].
Dieci, Maria Vittoria ;
Miglietta, Federica ;
Guarneri, Valentina .
CELLS, 2021, 10 (02) :1-27