Toward enzyme-responsive polymersome drug delivery

被引:8
|
作者
Paruchuri, Bipin Chakravarthy [1 ]
Gopal, Varun [1 ,2 ]
Sarupria, Sapna [1 ,3 ,4 ]
Larsen, Jessica [1 ,5 ]
机构
[1] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29631 USA
[2] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
[3] Clemson Univ, Ctr Opt Mat Sci & Engn Technol, Clemson, SC 29670 USA
[4] Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA
[5] Clemson Univ, Dept Bioengn, Clemson, SC 29631 USA
基金
美国国家科学基金会;
关键词
computer simulations; drug delivery; enzyme responsiveness; morphology phase diagrams; nanomedicine; nanoparticles; polymersomes; stimuli responsiveness; AQUEOUS DISPERSION POLYMERIZATION; DISSIPATIVE PARTICLE DYNAMICS; BLOCK-COPOLYMER; PHASE-DIAGRAMS; POLY(ETHYLENE GLYCOL); MOLECULAR-DYNAMICS; IN-VITRO; VESICLES; DEGRADATION; SIMULATION;
D O I
10.2217/nnm-2021-0194
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In drug delivery, enzyme-responsive drug carriers are becoming increasingly relevant because of the growing association of disease pathology with enzyme overexpression. Polymersomes are of interest to such applications because of their tunable properties. While polymersomes open up a wide range of chemical and physical properties to explore, they also present a challenge in developing generalized rules for the synthesis of novel systems. Motivated by this issue, in this perspective, we summarize the existing knowledge on enzyme-responsive polymersomes and outline the main design choices. Then, we propose heuristics to guide the design of novel systems. Finally, we discuss the potential of an integrated approach using computer simulations and experimental studies to streamline this design process and close the existing knowledge gaps. Tweetable abstract: How can we optimize the design of enzyme-responsive polymersomes to better treat disease? In this perspective, three common modes of enzymatic action in these nanoparticles are identified.
引用
收藏
页码:2679 / 2693
页数:15
相关论文
共 50 条
  • [1] Enzyme-responsive drug-delivery systems
    1600, Royal Society of Chemistry, Milton Road, Cambridge, CB4 OWF, United Kingdom (02):
  • [2] Enzyme-responsive Nanoparticles for Anticancer Drug Delivery
    Kuang, Tairong
    Liu, Yarong
    Gong, Tiantian
    Peng, Xiangfang
    Hu, Xianglong
    Yu, Zhiqiang
    CURRENT NANOSCIENCE, 2016, 12 (01) : 38 - 46
  • [3] Enzyme-responsive nanomaterials for controlled drug delivery
    Hu, Quanyin
    Katti, Prateek S.
    Gu, Zhen
    NANOSCALE, 2014, 6 (21) : 12273 - 12286
  • [4] Enzyme-responsive drug-delivery systems
    Caponi, Pier-Francesco
    Ulijn, Rein V.
    RSC Smart Materials, 2013, 1 (01): : 232 - 255
  • [5] Enzyme-Responsive Hydrogel Microparticles for Pulmonary Drug Delivery
    Secret, Emilie
    Kelly, Stefan J.
    Crannell, Kelsey E.
    Andrew, Jennifer S.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (13) : 10313 - 10321
  • [6] Enzyme-responsive multistage vector for drug delivery to tumor tissue
    Mi, Yu
    Wolfram, Joy
    Mu, Chaofeng
    Liu, Xuewu
    Blanco, Elvin
    Shen, Haifa
    Ferrari, Mauro
    PHARMACOLOGICAL RESEARCH, 2016, 113 : 92 - 99
  • [7] Synthesis of enzyme-responsive phosphoramidate dendrimers for cancer drug delivery
    Zhang, Zhen
    Zhou, Yongcun
    Zhou, Zhuxian
    Piao, Ying
    Kalva, Nagendra
    Liu, Xiangrui
    Tang, Jianbin
    Shen, Youqing
    POLYMER CHEMISTRY, 2018, 9 (04) : 438 - 449
  • [8] Enzyme-Responsive Nanoparticles for Anti-tumor Drug Delivery
    Li, Mengqian
    Zhao, Guangkuo
    Su, Wei-Ke
    Shuai, Qi
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [9] Targeted enzyme-responsive drug carriers: Studies on the delivery of a combination of drugs
    Lee, MR
    Baek, KH
    Jin, HJ
    Jung, YG
    Shin, I
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (13) : 1675 - 1678
  • [10] Enzyme-Responsive Amphiphilic Peptide Nanoparticles for Biocompatible and Efficient Drug Delivery
    Song, Su Jeong
    Choi, Joon Sig
    PHARMACEUTICS, 2022, 14 (01)