3D printing for polymer/particle-based processing: A review

被引:189
作者
Xu, Weiheng [1 ]
Jambhulkar, Sayli [1 ]
Zhu, Yuxiang [1 ]
Ravichandran, Dharneedar [1 ]
Kakarla, Mounika [2 ]
Vernon, Brent [3 ]
Lott, David G. [4 ,5 ]
Cornella, Jeffrey L. [6 ]
Shefi, Orit [7 ,8 ]
Miquelard-Garnier, Guillaume [9 ]
Yang, Yang [10 ]
Song, Kenan [11 ]
机构
[1] Arizona State Univ, Ira A Fulton Sch Engn, Polytech Sch TPS, 6075 Innovat Way W, Mesa, AZ 85212 USA
[2] Arizona State Univ, Ira A Fulton Sch Engn, Dept Mat Sci & Engn, 501 E Tyler Mall, Tempe, AZ 85287 USA
[3] Arizona State Univ, Sch Biol & Hlth Syst Engn, 427 E Tyler Mall, Tempe, AZ 85281 USA
[4] Coll Med, Div Laryngol, 13400 E Shea Blvd, Scottsdale, AZ 85259 USA
[5] Mayo Clin, Arizona Ctr Regenerat Med, 13400 E Shea Blvd, Scottsdale, AZ 85259 USA
[6] Mayo Clin, Div Gynecol Surg, Coll Med, 13400 E Shea Blvd, Scottsdale, AZ 85259 USA
[7] Bar Ilan Univ, Neuroengn & Regenerat Lab, Bldg 1105, IL-52900 Ramat Gan, Israel
[8] Bar Ilan Univ, Bar Ilan Inst Nanotechnol & Adv Mat, Bldg 1105, IL-52900 Ramat Gan, Israel
[9] Hesam Univ, CNRS, CNAM, Lab PIMM,UMR 8006,Arts & Metiers Inst Technol, 151 Blvd LHop, F-75013 Paris, France
[10] San Diego State Univ, Dept Mech Engn, 5500 Campanile Dr, San Diego, CA 92182 USA
[11] Arizona State Univ, Ira A Fulton Sch Engn, Adv Mat Adv Mfg Lab AMAML, 6075 Innovat Way W, Mesa, AZ 85212 USA
关键词
BIODEGRADABLE POLY(BUTYLENE SUCCINATE); IN-VITRO DEGRADATION; MECHANICAL-PROPERTIES; SHAPE-MEMORY; ELECTROHYDRODYNAMIC INKJET; CHITOSAN SCAFFOLDS; CARBON NANOTUBES; DYNAMIC EXCHANGE; POLYLACTIC ACID; COMPOSITE;
D O I
10.1016/j.compositesb.2021.109102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The 3D printing method, alternatively known as additive manufacturing (AM), is promising for rapid tooling and layered micromanufacturing. However, significant fundamental research and applied study in the 3D printing area are still necessary to develop new manufacturing mechanisms for combining multi-materials for multiscale and multi-functionality behaviors. Among those materials, particles with unique mechanical, thermal, electrical, optical, and other functional properties can find broad applications in structural composites, thermal packaging, electrical devices, optoelectronics, biomedical implants, energy storage, filtration, and purification. This review will first briefly cover the 3D printing basics before presenting the critical factors in polymer/particle-based printing. We will then introduce a spectrum of different printing mechanisms, i.e., vat polymerization-based, jetting-based, material extrusion-based, powder bed fusion-based, and a few other less utilized 3D printing methods, with a summary of the processing parameters, advantages, disadvantages, and future challenges of each printing technique. During this discussion of 3D printing, we will also present generally used polymers and particles, namely, liquid monomers, viscous inks, compliant gels, stiff filaments, and loosely packed pellets containing micro and nanoscale particles. The emphasis of this review is on the general printing mechanisms applicable in particle- and polymer-relevant processing. To end, this review identifies provides future perspectives regarding some new application examples. Identifying challenges in materials science and manufacturing processes will give direction to the fabrication of multifunctional systems for diverse applications, especially when using multi-materials (e.g., polymers and particles) at multiple scales (e.g., nanoscale morphologies and macroscale structures) for multifunctional systems.
引用
收藏
页数:24
相关论文
共 240 条
[1]   Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering [J].
Adekogbe, I ;
Ghanem, A .
BIOMATERIALS, 2005, 26 (35) :7241-7250
[2]   3D Photofixation Lithography in Diels-Alder Networks [J].
Adzima, Brian J. ;
Kloxin, Christopher J. ;
DeForest, Cole A. ;
Anseth, Kristi S. ;
Bowman, Christopher N. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2012, 33 (24) :2092-2096
[3]   An overview of toughening polylactic acid by an elastomer [J].
Alias, Nur Fazreen ;
Ismail, Hanafi .
POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2019, 58 (13) :1399-1422
[4]  
Alias NF, 2018, BIORESOURCES, V13, P5711
[5]  
Alkadi F, 2019, INT J PR ENG MAN-GT, V6, P211
[6]   High-Resolution Printing of 3D Structures Using an Electrohydrodynamic Inkjet with Multiple Functional Inks [J].
An, Byeong Wan ;
Kim, Kukjoo ;
Lee, Heejoo ;
Kim, So-Yun ;
Shim, Yulhui ;
Lee, Dae-Young ;
Song, Jun Yeob ;
Park, Jang-Ung .
ADVANCED MATERIALS, 2015, 27 (29) :4322-4328
[7]  
[Anonymous], 2011, ASTM J, P1
[8]  
[Anonymous], 2015, ASTM, V3, P5
[9]   3D printed remendable polylactic acid blends with uniform mechanical strength enabled by a dynamic Diels-Alder reaction [J].
Appuhamillage, Gayan A. ;
Reagan, John C. ;
Khorsandi, Sina ;
Davidson, Joshua R. ;
Voit, Walter ;
Smaldone, Ronald A. .
POLYMER CHEMISTRY, 2017, 8 (13) :2087-2092
[10]   Binder-jet powder-bed additive manufacturing (3D printing) of thick graphene-based electrodes [J].
Azhari, Amir ;
Marzbanrad, Ehsan ;
Yilman, Dilara ;
Toyserkani, Ehsan ;
Pope, Michael A. .
CARBON, 2017, 119 :257-266