Sparse and Low-Rank Tensor Decomposition

被引:0
作者
Shah, Parikshit
Rao, Nikhil
Tang, Gongguo
机构
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015) | 2015年 / 28卷
关键词
MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motivated by the problem of robust factorization of a low-rank tensor, we study the question of sparse and low-rank tensor decomposition. We present an efficient computational algorithm that modifies Leurgans' algoirthm for tensor factorization. Our method relies on a reduction of the problem to sparse and low-rank matrix decomposition via the notion of tensor contraction. We use well-understood convex techniques for solving the reduced matrix sub-problem which then allows us to perform the full decomposition of the tensor. We delineate situations where the problem is recoverable and provide theoretical guarantees for our algorithm. We validate our algorithm with numerical experiments.
引用
收藏
页数:9
相关论文
共 27 条
  • [1] Performance evaluation of AR4 Climate Models in simulating daily precipitation over the Indian region using skill scores
    Anandhi, Aavudai
    Nanjundiah, Ravi S.
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2015, 119 (3-4) : 551 - 566
  • [2] Anandkumar A, 2014, J MACH LEARN RES, V15, P2239
  • [3] [Anonymous], ARXIV14051773
  • [4] [Anonymous], 2015, ARXIV150205023
  • [5] [Anonymous], 2011, ARXIV10100789
  • [6] [Anonymous], 2015, OPTIMAL LOW RANK TEN
  • [7] [Anonymous], 2011, P 28 INT C MACHINE L
  • [8] Tensorial extensions of independent component analysis for multisubject FMRI analysis
    Beckmann, CF
    Smith, SM
    [J]. NEUROIMAGE, 2005, 25 (01) : 294 - 311
  • [9] Smoothed Analysis of Tensor Decompositions
    Bhaskara, Aditya
    Charikar, Moses
    Moitra, Ankur
    Vijayaraghavan, Aravindan
    [J]. STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 594 - 603
  • [10] Robust Principal Component Analysis?
    Candes, Emmanuel J.
    Li, Xiaodong
    Ma, Yi
    Wright, John
    [J]. JOURNAL OF THE ACM, 2011, 58 (03)