Application of Optimal Homotopy Analysis Method for Solitary Wave Solutions of Kuramoto-Sivashinsky Equation

被引:1
作者
Wang, Qi [1 ]
机构
[1] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2011年 / 66卷 / 1-2期
关键词
Kuramoto-Sivashinsky Equation; Optimal Homotopy Analysis Method; Solitary Wave Solution; APPROXIMATE SOLUTION TECHNIQUE; SMALL PARAMETERS; FLUID; FLOW;
D O I
10.1515/zna-2011-1-216
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, the optimal homotopy analysis method is applied to find the solitary wave solutions of the Kuramoto-Sivashinsky equation. With three auxiliary convergence-control parameters, whose possible optimal values can be obtained by minimizing the averaged residual error, the method used here provides us with a simple way to adjust and control the convergence region of the solution. Compared with the usual homotopy analysis method, the optimal method can be used to get much faster convergent series solutions.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 19 条
[1]   Solitary wave solutions to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method [J].
Abbasbandy, S. .
NONLINEAR DYNAMICS, 2008, 52 (1-2) :35-40
[2]   The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation [J].
Abbasbandy, S. .
PHYSICS LETTERS A, 2007, 361 (06) :478-483
[3]   The application of homotopy analysis method to nonlinear equations arising in heat transfer [J].
Abbasbandy, S. .
PHYSICS LETTERS A, 2006, 360 (01) :109-113
[4]   Numerical Results of a Flow in a Third Grade Fluid between Two Porous Walls [J].
Abbasbandy, Saeid ;
Hayat, Tasawar ;
Ellahi, Rahmat ;
Asghar, Saleem .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (1-2) :59-64
[5]  
Ablowitz M., 1991, Soliton, Nonlinear Evolution Equations and Inverse Scattering
[6]  
[Anonymous], 1980, DIRECT METHODS SOLIT
[7]  
CONTE R, 2003, LECT NOTES PHYS, V32
[8]  
Gu C., 1991, DARBOUX TRANSFORMATI
[9]  
Liao S., 2003, PERTURBATION INTRO H
[10]  
Liao S.J., 1992, Ph.D thesis