As(III) uptake from solution by synthetic mackinawite is examined as a function of pH and initial As(III) concentration using X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD). XAS data indicate that when mackinawite is reacted at pH 5, 7, and 9 with 5 x 10(-4) M As(III), arsenic is reduced from its original +3 valence state and is primarily coordinated as As-S (similar to 2.26 angstrom) and As-As (similar to 2.54 angstrom),which is consistent with the formation of a realgar-like phase in agreement with XRD data. At 5 x 10(-5) M As(III), samples are markedly different from those collected at an order of magnitude higher concentration and differ at each pH value. The XAS analysis of mackinawite samples reacted with 5 x 10(-5) M As(III) shows a transition from As-0 coordination to As-S coordination as pH decreases, with the sample reacted at pH 5 resembling realgar. Under alkaline conditions, arsenic retains its original valence state of +3 and is primarily coordinated to oxygen at a distance of 1.75 angstrom. This may be attributed to uptake by adsorption as an As(III) oxyanion. These results provide the basis for selecting the reactions needed for modeling and are beneficial in understanding the mechanisms of arsenite uptake by mackinawite under anoxic sulfidic conditions.