An elliptic curve having large integral points

被引:9
作者
He, Yanfeng [1 ,2 ]
Zhang, Wenpeng [1 ]
机构
[1] NW Univ Xian, Dept Math, Xian 710069, Shaanxi, Peoples R China
[2] Yanan Univ, Coll Math & Comp Sci, Yanan 716000, Shaanxi, Peoples R China
关键词
elliptic curve; integral point; Diophantine equation; DIOPHANTINE EQUATIONS;
D O I
10.1007/s10587-010-0075-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to prove that the elliptic curve E: y (2) = x (3) + 27x - 62 has only the integral points (x, y) = (2, 0) and (28844402, +/- 154914585540), using elementary number theory methods and some known results on quadratic and quartic Diophantine equations.
引用
收藏
页码:1101 / 1107
页数:7
相关论文
共 6 条
[1]   DIOPHANTINE EQUATION Y2=AX3+BX2+CX+D [J].
BAKER, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1968, 43 (169P) :1-&
[2]   Computing all integer solutions of a genus 1 equation [J].
Stroeker, RJ ;
Tzanakis, N .
MATHEMATICS OF COMPUTATION, 2003, 72 (244) :1917-1933
[3]   On the elliptic logarithm method for elliptic diophantine equations: Reflections and an improvement [J].
Stroeker, RJ ;
Tzanakis, N .
EXPERIMENTAL MATHEMATICS, 1999, 8 (02) :135-149
[4]   ON DIOPHANTINE EQUATION MX2-NY2=+-1 [J].
WALKER, DT .
AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (05) :504-&
[5]   A note on a theorem of Ljunggren and the Diophantine equations x2-kxy2+y4=1,4 [J].
Walsh, G .
ARCHIV DER MATHEMATIK, 1999, 73 (02) :119-125
[6]  
ZAGIER D, 1987, MATH COMPUT, V48, P425, DOI 10.1090/S0025-5718-1987-0866125-3