Effect of residual stress on laser-induced damage characterization of mitigated damage sites in fused silica

被引:16
作者
Jiang, Y. [2 ,3 ]
Xiang, X. [1 ]
Liu, C. M. [1 ]
Wang, H. J. [4 ]
Liao, W. [4 ]
Lv, H. B. [4 ]
Yuan, X. D. [4 ]
Qiu, R. [2 ,3 ]
Yang, Y. J. [2 ,3 ]
Zheng, W. G. [4 ]
Zu, X. T. [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China
[2] Southwest Univ Sci & Technol, Joint Lab Extreme Condit Matter Properties, Mianyang 621010, Peoples R China
[3] CAEP, Res Ctr Laser Fus, Mianyang 621010, Peoples R China
[4] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Fused silica; Residual stress; Damage; Annealing; SURFACE; GROWTH; BREAKDOWN; PULSES; GLASS;
D O I
10.1016/j.jnoncrysol.2014.11.038
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The influences of residual stress on damage morphology and laser-induced damage threshold (LIDT) of mitigated sites in fused silica optical components before and after annealing are investigated. The results indicate that the cracks occur either at the inner location or at the maximum retardation location of mitigated sites once the residual stress (retardation) exceeds 26.49 +/- 1.79 MPa (22.25 +/- 1.5 nm). Meanwhile, the discrepancy of stress at different locations results in the fluctuation of LIDTs. The results of isochronal and isothermal annealing indicate that annealing temperature is the most important influence factor and the residual stress can be effectively controlled if the residual stress induced by the maximum CO2 laser beam is eliminated. Furthermore, the LIDT of mitigated sites can be enhanced without dramatical fluctuation and the damage growth coefficient that is sharply increasing can be avoided if the retardation of mitigated site is equal to or less than 5 nm. The study demonstrates that annealing significantly improves the resistance of fused silica optics. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 95
页数:8
相关论文
共 18 条
[1]   Results of applying a non-evaporative mitigation technique to laser-initiated surface damage on fused-silica [J].
Adams, J. J. ;
Bolourchi, M. ;
Bude, J. D. ;
Guss, G. M. ;
Matthews, M. J. ;
Nostrand, M. C. .
LASER-INDUCED DAMAGE IN OPTICAL MATERIALS: 2010, 2010, 7842
[2]   An Improved Method of Mitigating Laser Induced Surface Damage Growth in Fused Silica Using a Rastered, Pulsed CO2 Laser [J].
Bass, Isaac L. ;
Guss, Gabriel M. ;
Nostrand, Michael J. ;
Wegner, Paul J. .
LASER-INDUCED DAMAGE IN OPTICAL MATERIALS: 2010, 2010, 7842
[3]   Effect of CO2 laser annealing on residual stress and on laser damage resistance for fused silica optics [J].
Cormont, P. ;
Gallais, L. ;
Lamaignere, L. ;
Donval, T. ;
Rullier, J. L. .
LASER-INDUCED DAMAGE IN OPTICAL MATERIALS: 2010, 2010, 7842
[4]   Impact of two CO2 laser heatings for damage repairing on fused silica surface [J].
Cormont, P. ;
Gallais, L. ;
Lamaignere, L. ;
Rullier, J. L. ;
Combis, P. ;
Hebert, D. .
OPTICS EXPRESS, 2010, 18 (25) :26068-26076
[5]   Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses [J].
Demos, Stavros G. ;
Raman, Rajesh N. ;
Negres, Raluca A. .
OPTICS EXPRESS, 2013, 21 (04) :4875-4888
[6]  
Feit M. D., 2010, P SOC PHOTO-OPT INS, V7842
[7]  
Gallais L, 2009, P SOC PHOTO-OPT INS, V7504
[8]   Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation [J].
Gallais, Laurent ;
Cormont, Philippe ;
Rullier, Jean-Luc .
OPTICS EXPRESS, 2009, 17 (26) :23488-23501
[9]   Role of light intensification by cracks in optical breakdown on surfaces [J].
Génin, FY ;
Salleo, A ;
Pistor, TV ;
Chase, LL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (10) :2607-2616
[10]   Two localized CO2 laser treatment methods for mitigation of UV damage growth in fused silica [J].
Jiang Yong ;
Xiang Xia ;
Liu Chun-Ming ;
Luo Cheng-Si ;
Wang Hai-Jun ;
Yuan Xiao-Dong ;
He Shao-Bo ;
Ren Wei ;
Lu Hai-Bing ;
Zheng Wan-Guo ;
Zu Xiao-Tao .
CHINESE PHYSICS B, 2012, 21 (06)