SOLVABILITY AND SLIDING MODE CONTROL FOR THE VISCOUS CAHN-HILLIARD SYSTEM WITH A POSSIBLY SINGULAR POTENTIAL
被引:1
作者:
论文数: 引用数:
h-index:
机构:
Colli, Pierluigi
[1
]
Gilardi, Gianni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 5, I-27100 Pavia, ItalyUniv Pavia, Dipartimento Matemat F Casorati, Via Ferrata 5, I-27100 Pavia, Italy
Gilardi, Gianni
[1
]
Marinoschi, Gabriela
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad ISMMA, Inst Math Stat & Appl Math, Calea 13 Septembrie 13, Bucharest 050711, RomaniaUniv Pavia, Dipartimento Matemat F Casorati, Via Ferrata 5, I-27100 Pavia, Italy
Marinoschi, Gabriela
[2
]
机构:
[1] Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 5, I-27100 Pavia, Italy
[2] Romanian Acad ISMMA, Inst Math Stat & Appl Math, Calea 13 Septembrie 13, Bucharest 050711, Romania
Viscous Cahn-Hilliard equation;
state-feedback control law;
initial-boundary value problem;
well-posedness;
regularity;
sliding mode property;
DIFFUSION PDES;
EQUATIONS;
EXISTENCE;
D O I:
10.3934/mcrf.2020051
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In the present contribution we study a viscous Cahn-Hilliard system where a further leading term in the expression for the chemical potential mu is present. This term consists of a subdifferential operator S in L-2(Omega) (where Omega is the domain where the evolution takes place) acting on the difference of the phase variable phi and a given state phi*, which is prescribed and may depend on space and time. We prove existence and continuous dependence results in case of both homogeneous Neumann and Dirichlet boundary conditions for the chemical potential mu. Next, by assuming that S = rho sign, a multiple of the sign operator, and for smoother data, we first show regularity results. Then, in the case of Dirichlet boundary conditions for mu and under suitable conditions on rho and S2, we also prove the sliding mode property, that is, that phi is forced to join the evolution of phi* in some time T* lower than the given final time T. We point out that all our results hold true for a very general and possibly singular multi-well potential acting on phi.
机构:
Univ Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, ItalyUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy
Bonetti, Elena
论文数: 引用数:
h-index:
机构:
Colli, Pierluigi
Scarpa, Luca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy
机构:
Calif State Univ Los Angeles, Dept Mech Engn, Los Angeles, CA 90032 USA
Amer Univ Sharjah, Dept Mech Engn, Sharjah, U Arab EmiratesNatl Chung Hsing Univ, Dept Elect Engn, Taichung 402, Taiwan
机构:
Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy
IMATI CNR, Via Ferrata 1, I-27100 Pavia, ItalyUniv Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy
Gilardi, Gianni
Marinoschi, Gabriela
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, Calea 13 Septembrie 13, Bucharest 050711, RomaniaUniv Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy
机构:
Univ Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, ItalyUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy
Bonetti, Elena
论文数: 引用数:
h-index:
机构:
Colli, Pierluigi
Scarpa, Luca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaUniv Milan, Dipartimento Matemat F Enriques, Via Saldini 50, I-20133 Milan, Italy
机构:
Calif State Univ Los Angeles, Dept Mech Engn, Los Angeles, CA 90032 USA
Amer Univ Sharjah, Dept Mech Engn, Sharjah, U Arab EmiratesNatl Chung Hsing Univ, Dept Elect Engn, Taichung 402, Taiwan
机构:
Univ Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy
IMATI CNR, Via Ferrata 1, I-27100 Pavia, ItalyUniv Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy
Gilardi, Gianni
Marinoschi, Gabriela
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, Calea 13 Septembrie 13, Bucharest 050711, RomaniaUniv Pavia, Dipartimento Matemat F Casorati, Via Ferrata 1, I-27100 Pavia, Italy