Rogue wave solutions and modulation instability for the mixed nonlinear Schrodinger equation

被引:18
作者
Liu, Ya-Hui [1 ]
Guo, Rui [1 ]
Li, Xing-Lan [1 ]
机构
[1] Taiyuan Univ Technol, Sch Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金; 山西省青年科学基金;
关键词
The mixed nonlinear Schrodinger equation; Darboux transformation; Rogue wave solutions; Semi-rational solutions; Modulation instability;
D O I
10.1016/j.aml.2021.107450
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Via Darboux transformation (DT) algorithm, rogue wave and semi-rational solutions of the mixed nonlinear Schrodinger equation (MNLSE) will be derived. Meanwhile, the dynamic features of those solutions will be graphically analyzed. In addition, the modulation instability (MI) of the MNLSE will be discussed and it will be found that the existence range of rogue waves is strictly consistent with the zero frequency modulation instability region. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 11 条
[1]  
Agrawal G.P., 2001, Nonlinear fibre optics, V3rd
[2]   Extreme waves that appear from nowhere: On the nature of rogue waves [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICS LETTERS A, 2009, 373 (25) :2137-2145
[3]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[4]  
Akhmediev N., 2020, FRONT PHYS, V8, P631
[5]   Baseband modulation instability as the origin of rogue waves [J].
Baronio, Fabio ;
Chen, Shihua ;
Grelu, Philippe ;
Wabnitz, Stefan ;
Conforti, Matteo .
PHYSICAL REVIEW A, 2015, 91 (03)
[6]   Vector Rogue Waves and Baseband Modulation Instability in the Defocusing Regime [J].
Baronio, Fabio ;
Conforti, Matteo ;
Degasperis, Antonio ;
Lombardo, Sara ;
Onorato, Miguel ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[7]   Concurrent instabilities causing multiple rogue waves in infinite-dimensional dynamical systems [J].
Chowdury, Amdad ;
Akhmediev, Nail ;
Chang, Wonkeun .
NONLINEAR DYNAMICS, 2020, 99 (03) :2265-2275
[8]   Soliton and Breather Solutions for the Mixed Nonlinear Schrodinger Equation via N-Fold Darboux Transformation [J].
Hao, Hui-Qin ;
Zhang, Jian-Wen ;
Guo, Rui .
JOURNAL OF APPLIED MATHEMATICS, 2014,
[9]   Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrodinger equation [J].
Wen, Xiao-Yong ;
Yang, Yunqing ;
Yan, Zhenya .
PHYSICAL REVIEW E, 2015, 92 (01)
[10]  
Yang W.L., 2019, Integrable Model Method and Its Application