Polariton Anomalous Hall Effect in Transition-Metal Dichalcogenides

被引:15
作者
Gutierrez-Rubio, A. [1 ]
Chirolli, L. [1 ]
Martin-Moreno, L. [2 ]
Garcia-Vidal, F. J. [3 ,4 ,5 ]
Guinea, F. [1 ,5 ,6 ]
机构
[1] IMDEA Nanosci Inst, C Faraday 9, E-28049 Madrid, Spain
[2] Univ Zaragoza, Inst Ciencia Mat, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain
[3] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-8049 Madrid, Spain
[4] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-8049 Madrid, Spain
[5] DIPC, E-20018 Donostia San Sebastian, Spain
[6] Univ Manchester, Sch Phys & Astron, Manchester M13 9PY, Lancs, England
关键词
VALLEY POLARIZATION; EXCITON-POLARITONS; ROOM-TEMPERATURE; MONOLAYER MOS2; BERRY PHASE; LIGHT; CONDUCTANCE; GRAPHENE;
D O I
10.1103/PhysRevLett.121.137402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the properties of strongly coupled excitons and photons in systems made of semiconducting two-dimensional transition-metal dichalcogenides embedded in optical cavities. Through a detailed microscopic analysis of the coupling, we unveil novel, highly tunable features of the spectrum that result in polariton splitting and a breaking of light-matter selection rules. The dynamics of the composite polaritons is influenced by the Berry phase arising both from their constituents and from the confinement-enhanced coupling. We find that light-matter coupling emerges as a mechanism that enhances the Berry phase of polaritons well beyond that of its elementary constituents, paving the way to achieve a polariton anomalous Hall effect.
引用
收藏
页数:6
相关论文
共 58 条
[31]  
Mak KF, 2012, NAT NANOTECHNOL, V7, P494, DOI [10.1038/nnano.2012.96, 10.1038/NNANO.2012.96]
[32]   Spin-Orbit Coupling and the Optical Spin Hall Effect in Photonic Graphene [J].
Nalitov, A. V. ;
Malpuech, G. ;
Tercas, H. ;
Solnyshkov, D. D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (02)
[33]   QUANTIZED HALL CONDUCTANCE AS A TOPOLOGICAL INVARIANT [J].
NIU, Q ;
THOULESS, DJ ;
WU, YS .
PHYSICAL REVIEW B, 1985, 31 (06) :3372-3377
[34]  
Onga M, 2017, NAT MATER, V16, P1193, DOI [10.1038/NMAT4996, 10.1038/nmat4996]
[35]   Hall effect of light [J].
Onoda, M ;
Murakami, S ;
Nagaosa, N .
PHYSICAL REVIEW LETTERS, 2004, 93 (08) :083901-1
[36]   Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting [J].
Panzarini, G ;
Andreani, LC ;
Armitage, A ;
Baxter, D ;
Skolnick, MS ;
Astratov, VN ;
Roberts, JS ;
Kavokin, AV ;
Vladimirova, MR ;
Kaliteevski, MA .
PHYSICAL REVIEW B, 1999, 59 (07) :5082-5089
[37]   Effective-mass theory for the anisotropic exciton in two-dimensional crystals: Application to phosphorene [J].
Prada, Elsa ;
Alvarez, J. V. ;
Narasimha-Acharya, K. L. ;
Bailen, F. J. ;
Palacios, J. J. .
PHYSICAL REVIEW B, 2015, 91 (24)
[38]   Spin Hall effect of light measured by interferometry [J].
Prajapati, Chandravati ;
Ranganathan, D. ;
Joseph, Joby .
OPTICS LETTERS, 2013, 38 (14) :2459-2462
[39]   Theory of 2D crystals: graphene and beyond [J].
Roldan, Rafael ;
Chirolli, Luca ;
Prada, Elsa ;
Angel Silva-Guillen, Jose ;
San-Jose, Pablo ;
Guinea, Francisco .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (15) :4387-4399
[40]   Long-Range Transport of Organic Exciton-Polaritons Revealed by Ultrafast Microscopy [J].
Rozenman, Georgi Gary ;
Akulov, Katherine ;
Golombek, Adina ;
Schwartz, Tal .
ACS PHOTONICS, 2018, 5 (01) :105-110