Convergence of a finite volume scheme for the compressible Navier-Stokes system

被引:19
作者
Feireisl, Eduard [1 ,2 ]
Lukacova-Medvid'ova, Maria [3 ]
Mizerova, Hana [1 ,4 ]
She, Bangwei [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] Tech Univ Berlin, Str 17 Juni, Berlin, Germany
[3] Johannes Gutenberg Univ Mainz, Inst Math, Staudingerweg 9, D-55128 Mainz, Germany
[4] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2019年 / 53卷 / 06期
关键词
Compressible Navier-Stokes system; convergence; dissipative measure valued solution; finite volume method; ISENTROPIC EULER;
D O I
10.1051/m2an/2019043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study convergence of a finite volume scheme for the compressible (barotropic) Navier-Stokes system. First we prove the energy stability and consistency of the scheme and show that the numerical solutions generate a dissipative measure-valued solution of the system. Then by the dissipative measure-valued-strong uniqueness principle, we conclude the convergence of the numerical solution to the strong solution as long as the latter exists. Numerical experiments for standard benchmark tests support our theoretical results.
引用
收藏
页码:1957 / 1979
页数:23
相关论文
共 35 条
[1]  
[Anonymous], ARXIV180308401
[2]  
[Anonymous], 2002, CLASSICS APPL MATH
[3]   An L2-stable approximation of the Navier-Stokes convection operator for low-order non-conforming finite elements [J].
Ansanay-Alex, G. ;
Babik, F. ;
Latche, J. C. ;
Vola, D. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 66 (05) :555-580
[4]  
BALL JM, 1989, LECT NOTES PHYS, V344, P207
[5]  
Birken P, 2012, NUMERICAL METHODS UN
[6]   All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations [J].
Degond, Pierre ;
Tang, Min .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (01) :1-31
[7]  
Doleji V., 2015, SPRINGER SERIES COMP, V48
[8]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[9]  
Feireisl E., 2018, ARXIV180505072
[10]  
Feireisl E., 2017, Singular Limits in Thermodynamics of Viscous Fluids (Advances in Mathematical Fluid Mechanics), V2nd edn