High-density linkage mapping for agronomic and physiological traits of rice (Oryza sativa L.) under reproductive-stage salt stress

被引:3
|
作者
Ahmadizadeh, Mostafa [1 ,3 ]
Babaeian-Jelodar, Nadali [1 ]
Mohammadi-Nejad, Ghasem [2 ]
Bagheri, Nadali [1 ]
Singh, Rakesh Kumar [3 ,4 ]
机构
[1] Sari Agr Sci & Nat Resources Univ SANRU, Dept Plant Breeding, Sari 4818166996, Iran
[2] Shahid Bahonar Univ, Inst Plant Prod RTIPP, Dept Agron & Plant Breeding & Res & Technol, Kerman 7616913439, Iran
[3] Int Rice Res Inst IRRI, Plant Breeding Div, Los Banos, Laguna, Philippines
[4] Int Ctr Biosaline Agr ICBA, Crop Diversificat & Genet Sect, Dubai, U Arab Emirates
关键词
single-nucleotide polymorphism; salinity; genetic map; reproductive stage; SALINITY TOLERANCE; CHLOROPHYLL FLUORESCENCE; YIELD COMPONENTS; SEEDLING STAGE; GAS-EXCHANGE; QTLS; MARKERS; PHOTOSYNTHESIS; IDENTIFICATION; ALKALINITY;
D O I
10.1007/s12041-021-01301-6
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Rice is one of the most important cereals of the world, with a substantial amount of genetic variation, and a staple food for more than half of the world's population. Salinity is the second most important abiotic stress after drought that adversely affects rice production globally. Both the seedling and reproductive stages are extremely sensitive to salinity but tolerant at the reproductive stage which is most crucial, as it translates into grain yield. Therefore, it is more important to identify the underlying factors of tolerance at the reproductive stage as a necessary step towards improving varieties for salinity environments. However, because of the difficulties in phenotyping protocols of salinity tolerance screening at the reproductive stage, only a few studies exist on this aspect. In view of this, a study involving 188 F-4 rice lines derived from a cross CSR28 x Sadri along with the parents was carried out for phenotyping using a novel screening approach for the reproductive stage in salinity conditions and genotyping by SNP markers (Infinium Illumina 6K SNP chip) to construct a high-saturation linkage map. Quantitative trait loci analysis in an F-4 population for physiological traits (chlorophyll a, chlorophyll b and carotenoid) and agronomic traits (plant height, filled grain number, grain yield and spikelet fertility percentage) led to the identification of 14 QTLs with an LOD range of 2.72-4.46 explaining phenotypic variation of 5.29-24.86% on chromosomes 1, 2, 3, 5, 6, 7 and 8. Tolerant alleles were contributed by both CSR28 and Sadri. The results indicated that both physiological and agronomic traits were involved in salinity tolerance at the reproductive stage and majority of the QTLs identified in this study are reported for the first time.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Phenotyping and characterization of heat stress tolerance at reproductive stage in rice (Oryza sativa L.)
    Sourabh Karwa
    Rajeev Nayan Bahuguna
    Ashish K. Chaturvedi
    Sadhana Maurya
    Sunder Singh Arya
    Viswanathan Chinnusamy
    Madan Pal
    Acta Physiologiae Plantarum, 2020, 42
  • [22] Metabolic prediction of important agronomic traits in hybrid rice (Oryza sativa L.)
    Dan, Zhiwu
    Hu, Jun
    Zhou, Wei
    Yao, Guoxin
    Zhu, Renshan
    Zhu, Yingguo
    Huang, Wenchao
    SCIENTIFIC REPORTS, 2016, 6
  • [23] Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.)
    Mohammadi, Reza
    Mendioro, Merlyn S.
    Diaz, Genaleen Q.
    Gregorio, Glenn B.
    Singh, Rakesh K.
    JOURNAL OF GENETICS, 2013, 92 (03) : 433 - 443
  • [24] Mapping quantitative trait loci associated with yield and yield components under reproductive stage salinity stress in rice (Oryza sativa L.)
    REZA MOHAMMADI
    MERLYN S. MENDIORO
    GENALEEN Q. DIAZ
    GLENN B. GREGORIO
    RAKESH K. SINGH
    Journal of Genetics, 2013, 92 : 433 - 443
  • [25] PHYSIOLOGICAL RESPONSES OF RICE (ORYZA SATIVA L.) TO SALINE STRESS
    Shereen, Aisha
    Ansari, R. U.
    Yasmin, S.
    Raza, S.
    Mumtaz, S.
    Khan, M. A.
    Mujtaba, S. M.
    PAKISTAN JOURNAL OF BOTANY, 2007, 39 (07) : 2527 - 2534
  • [26] Association mapping of quantitative trait loci for yield-related agronomic traits in rice(Oryza sativa L.)
    XU Fei-fei
    JIN Liang
    HUANG Yan
    TONG Chuan
    CHEN Ya-ling
    BAO Jin-song
    JournalofIntegrativeAgriculture, 2016, 15 (10) : 2192 - 2202
  • [27] SALT STRESS AFFECTS THE AGRONOMIC TRAITS, PHYTIC ACID, AND AROMA OF RICE (Oryza sativa L.) M1 MUTANT LINES
    Ha, P. T. T.
    Tuan, T. M.
    Tho, N. X.
    Tram, N. T. N.
    Tram, N. T. B.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2020, 52 (03): : 216 - 230
  • [28] Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa L.)
    Xu Fei-fei
    Jin Liang
    Huang Yan
    Tong Chuan
    Chen Ya-ling
    Bao Jin-song
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2016, 15 (10) : 2192 - 2202
  • [29] Lower Nitrogen Levels Improve Growth and Some Physiological Traits of Rice (Oryza sativa) under Salt Stress during Reproductive Period
    Liu, Xiaolong
    Xu, Chen
    Ji, Ping
    Li, Qian
    Zhu, Mo
    Zhang, Zhian
    Lin, Fenglou
    Wang, Hongjun
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2020, 24 (04) : 769 - 776
  • [30] Response of Primed Rice (Oryza sativa L.) Seeds towards Reproductive Stage Drought Stress
    Salleh, Mohd Syahmi
    Nordin, Mohd Shukor
    Puteh, Adam B.
    Shahari, Rozilawati
    Zainuddin, Zarina
    Ab-Ghaffar, Mohamad Bahagia
    Shamsudin, Noraziyah Abd Aziz
    SAINS MALAYSIANA, 2021, 50 (10): : 2913 - 2921