Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative

被引:85
|
作者
Zhang, Tianwei [1 ]
Xiong, Lianglin [2 ]
机构
[1] Kunming Univ Sci & Technol, City Coll, Kunming 650051, Yunnan, Peoples R China
[2] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming 650500, Yunnan, Peoples R China
关键词
Piecewise Caputo fractional derivative; Impulse; Matrix Mittag-Leffler function; Exponential stability;
D O I
10.1016/j.aml.2019.106072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the basis of some crucial properties for one-parameter and two-parameter Mittag-Leffier functions, the existence, uniqueness and global exponential stability of periodic solution are discussed for a class of semilinear impulsive fractional functional differential equations with piecewise Caputo derivative. Some better result is achieved and it improves and extends some existing research finding. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Existence and Stability Results for Impulsive Implicit Fractional Differential Equations with Delay and Riesz-Caputo Derivative
    Rahou, Wafaa
    Salim, Abdelkrim
    Lazreg, Jamal Eddine
    Benchohra, Mouffak
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [32] Existence and uniqueness of periodic solutions for some nonlinear fractional pantograph differential equations with ψ-Caputo derivative
    Bouriah, Soufyane
    Foukrach, Djamal
    Benchohra, Mouffak
    Graef, John
    ARABIAN JOURNAL OF MATHEMATICS, 2021, 10 (03) : 575 - 587
  • [33] Implicit fractional differential equations with Φ-Caputo fractional derivative in Banach spaces
    Baitiche, Zidane
    Derbazi, Choukri
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (05) : 1237 - 1252
  • [34] Fractional neutral stochastic differential equations with Caputo fractional derivative: Fractional Brownian motion, Poisson jumps, and optimal control
    Ramkumar, K.
    Ravikumar, K.
    Varshini, S.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2021, 39 (01) : 157 - 176
  • [35] Existence results of fractional differential equations with Riesz–Caputo derivative
    Fulai Chen
    Dumitru Baleanu
    Guo-Cheng Wu
    The European Physical Journal Special Topics, 2017, 226 : 3411 - 3425
  • [36] A sufficient condition of viability for fractional differential equations with the Caputo derivative
    Girejko, Ewa
    Mozyrska, Dorota
    Wyrwas, Malgorzata
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (01) : 146 - 154
  • [37] Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06):
  • [38] THEORY AND ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS WITH A ψ-CAPUTO FRACTIONAL DERIVATIVE
    Vivek, D.
    Elsayed, E. M.
    Kanagarajan, K.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (04) : 1355 - 1370
  • [39] The averaging principle for stochastic differential equations with Caputo fractional derivative
    Xu, Wenjing
    Xu, Wei
    Zhang, Shuo
    APPLIED MATHEMATICS LETTERS, 2019, 93 : 79 - 84
  • [40] Mittag-Leffler Stability for Impulsive Caputo Fractional Differential Equations
    Agarwal, R.
    Hristova, S.
    O'Regan, D.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) : 689 - 705