Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative

被引:90
作者
Zhang, Tianwei [1 ]
Xiong, Lianglin [2 ]
机构
[1] Kunming Univ Sci & Technol, City Coll, Kunming 650051, Yunnan, Peoples R China
[2] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming 650500, Yunnan, Peoples R China
关键词
Piecewise Caputo fractional derivative; Impulse; Matrix Mittag-Leffler function; Exponential stability;
D O I
10.1016/j.aml.2019.106072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the basis of some crucial properties for one-parameter and two-parameter Mittag-Leffier functions, the existence, uniqueness and global exponential stability of periodic solution are discussed for a class of semilinear impulsive fractional functional differential equations with piecewise Caputo derivative. Some better result is achieved and it improves and extends some existing research finding. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 6 条
[1]   Periodic impulsive fractional differential equations [J].
Feckan, Michal ;
Wang, Jin Rong .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :482-496
[2]  
Guo B.L., 2011, FRATIONAL PATIAL DIF
[3]   Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions [J].
Kaslik, Eva ;
Sivasundaram, Seenith .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1489-1497
[4]  
Kilbas A., 2006, Theory and Applications of Fractional Differential Equations, V24, DOI DOI 10.1016/S0304-0208(06)80001-0
[5]   ASYMPTOTICALLY PERIODIC SOLUTIONS FOR CAPUTO TYPE FRACTIONAL EVOLUTION EQUATIONS [J].
Ren, Lulu ;
Wang, JinRong ;
Feckan, Michal .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (05) :1294-1312
[6]   Presentation of solutions of impulsive fractional Langevin equations and existence results [J].
Wang, J. ;
Feckan, M. ;
Zhou, Y. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08) :1857-1874