Generalized Hamilton's principle with fractional derivatives

被引:19
作者
Atanackovic, T. M. [1 ]
Konjik, S. [2 ]
Oparnica, Lj [3 ]
Pilipovic, S. [2 ]
机构
[1] Univ Novi Sad, Inst Mech, Fac Tech Sci, Novi Sad 21000, Serbia
[2] Univ Novi Sad, Dept Math & Informat, Fac Sci, Novi Sad 21000, Serbia
[3] SANU, Inst Math, Belgrade 11000, Serbia
基金
奥地利科学基金会;
关键词
VARIATIONAL CALCULUS; LINEAR VELOCITIES; FORMULATION; ORDER; MECHANICS;
D O I
10.1088/1751-8113/43/25/255203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize Hamilton's principle with fractional derivatives in the Lagrangian L(t, y(t), D-0(t)alpha y(t), alpha) so that the function y and the order of the fractional derivative alpha are varied in the minimization procedure. We derive stationarity conditions and discuss them through several examples.
引用
收藏
页数:12
相关论文
共 31 条
[1]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[2]   Fractional variational calculus and the transversality conditions [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33) :10375-10384
[3]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[4]  
Anthony K.-H., 1986, Disequilibrium and self-organisation, P75
[5]   Variational problems with fractional derivatives: Euler-Lagrange equations [J].
Atanackovic, T. M. ;
Konjik, S. ;
Pilipovic, S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (09)
[6]   On a nonlinear distributed order fractional differential equation [J].
Atanackovic, Teodor M. ;
Oparnica, Ljubica ;
Pihpovic, Stevan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :590-608
[7]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[8]   On exact solutions of a class of fractional Euler-Lagrange equations [J].
Baleanu, Dumitru ;
Trujillo, Juan J. .
NONLINEAR DYNAMICS, 2008, 52 (04) :331-335
[9]  
Dacorogna B., 2008, Applied Mathematical Sciences, V78
[10]  
DREISIGMEYER DW, 2003, J PHYS A, V37, P117