Investigating the Role of Surface Roughness and Defects on EC Breakdown, as a Precursor to SEI Formation in Hard Carbon Sodium-Ion Battery Anodes

被引:11
|
作者
Olsson, Emilia [1 ,2 ,3 ,4 ]
Cottom, Jonathon [5 ,6 ]
Alptekin, Hande [2 ,7 ]
Au, Heather [2 ]
Crespo-Ribadeneyra, Maria [2 ]
Titirici, Maria-Magdalena [2 ]
Cai, Qiong [1 ]
机构
[1] Univ Surrey, Dept Chem & Proc Engn, Guildford GU2 7XH, Surrey, England
[2] Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England
[3] Adv Res Ctr Nanolithog, Sci Pk 106, NL-1098 XG Amsterdam, Netherlands
[4] Univ Amsterdam, Inst Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[5] UCL, Dept Phys & Astron, London WC1E 6BT, England
[6] Leiden Univ, Leiden Inst Chem, NL-2333 CC Leiden, Netherlands
[7] Imperial Coll London, Dept Mat, Exhibit Rd, London SW7 2AZ, England
基金
荷兰研究理事会; 英国工程与自然科学研究理事会;
关键词
anodes; batteries; density functional theory; ethylene carbonate; hard carbon; sodium; X-ray photoelectron spectroscopy; ELECTROLYTE INTERPHASE SEI; MOLECULAR-DYNAMICS; ETHYLENE CARBONATE; STORAGE; MECHANISMS; INSIGHTS; INSERTION;
D O I
10.1002/smll.202200177
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hard carbon (HC) anodes together with ethylene carbonate (EC)-based electrolytes have shown significant promise for high-performing sodium-ion batteries. However, questions remain in relation to the initial contact between the carbon surface and the EC molecules. The surface of the HC anode is complex and can contain both flat pristine carbon surfaces, curvature, nanoscale roughness, and heteroatom defects. Combining density functional theory and experiments, the effect of different carbon surface motifs and defects on EC adsorption are probed, concluding that EC itself does not block any sodium storage sites. Nevertheless, the EC breakdown products do show strong adsorption on the same carbon surface motifs, indicating that the carbon surface defect sites can become occupied by the EC breakdown products, leading to competition between the sodium and EC fragments. Furthermore, it is shown that the EC fragments can react with a carbon vacancy or oxygen defect to give rise to CO2 formation and further oxygen functionalization of the carbon surface. Experimental characterization of two HC materials with different microstructure and defect concentrations further confirms that a significant concentration of oxygen-containing defects and disorder leads to a thicker solid electrolyte interphase, highlighting the significant effect of atomic-scale carbon structure on EC interaction.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Hard Carbon as Sodium-Ion Battery Anodes: Progress and Challenges
    Xiao, Biwei
    Rojo, Teofilo
    Li, Xiaolin
    CHEMSUSCHEM, 2019, 12 (01) : 133 - 144
  • [2] Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodium-Ion Battery Anodes
    Bommier, Clement
    Ji, Xiulei
    SMALL, 2018, 14 (16)
  • [3] Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodium-Ion Battery Anodes
    Dou, Xinwei
    Hasa, Ivana
    Saurel, Damien
    Jauregui, Maria
    Buchholz, Daniel
    Rojo, Teofilo
    Passerini, Stefano
    CHEMSUSCHEM, 2018, 11 (18) : 3276 - 3285
  • [4] A review of hard carbon anodes for rechargeable sodium-ion batteries
    Mu, Bao-yi
    Chi, Chun-lei
    Yang, Xin-hou
    Huangfu, Chao
    Qi, Bin
    Wang, Guan-wen
    Li, Zhi-yuan
    Song, Lei
    Wei, Tong
    Fan, Zhuang-jun
    NEW CARBON MATERIALS, 2024, 39 (05) : 796 - 823
  • [5] Recent Progress in Hard Carbon Anodes for Sodium-Ion Batteries
    Wang, Jiarui
    Xi, Lei
    Peng, Chenxi
    Song, Xin
    Wan, Xuanhong
    Sun, Luyi
    Liu, Meinan
    Liu, Jun
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (08)
  • [6] The Role of Hydrothermal Carbonization in Sustainable Sodium-Ion Battery Anodes
    Xu, Zhen
    Wang, Jing
    Guo, Zhenyu
    Xie, Fei
    Liu, Haoyu
    Yadegari, Hossein
    Tebyetekerwa, Mike
    Ryan, Mary P.
    Hu, Yong-Sheng
    Titirici, Maria-Magdalena
    ADVANCED ENERGY MATERIALS, 2022, 12 (18)
  • [7] Lithium-Pretreated Hard Carbon as High-Performance Sodium-Ion Battery Anodes
    Xiao, Biwei
    Soto, Fernando A.
    Gu, Meng
    Han, Kee Sung
    Song, Junhua
    Wang, Hui
    Engelhard, Mark H.
    Murugesan, Vijayakumar
    Mueller, Karl T.
    Reed, David
    Sprenkle, Vincent L.
    Balbuena, Perla B.
    Li, Xiaolin
    ADVANCED ENERGY MATERIALS, 2018, 8 (24)
  • [8] Synthesis strategies of hard carbon anodes for sodium-ion batteries
    Yin, Jian
    Zhang, Ye Shui
    Liang, Hanfeng
    Zhang, Wenli
    Zhu, Yunpei
    MATERIALS REPORTS: ENERGY, 2024, 4 (02):
  • [9] A Lignosulfonate Binder for Hard Carbon Anodes in Sodium-Ion Batteries: A Comparative Study
    Gond, Ritambhara
    Asfaw, Habtom Desta
    Hosseinaei, Omid
    Edstrom, Kristina
    Younesi, Reza
    Naylor, Andrew J.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (37): : 12708 - 12717
  • [10] Rational manipulation of electrolyte to induce homogeneous SEI on hard carbon anode for sodium-ion battery
    Liu, Lu
    Xiao, Lingling
    Sun, Zhi
    Bashir, Shahid
    Kasi, Ramesh
    Gu, Yonghong
    Subramaniam, Ramesh
    JOURNAL OF ENERGY CHEMISTRY, 2024, 94 : 414 - 429