Distinguishing between paediatric brain tumour types using multi- parametric magnetic resonance imaging and machine learning: A multi-site study

被引:29
作者
Grist, James T. [1 ]
Withey, Stephanie [1 ,2 ,3 ]
MacPherson, Lesley [4 ]
Oates, Adam [4 ]
Powell, Stephen [1 ]
Novak, Jan [2 ,5 ]
Abernethy, Laurence [6 ]
Pizer, Barry [7 ]
Grundy, Richard [8 ]
Bailey, Simon [9 ]
Mitra, Dipayan [10 ]
Arvanitis, Theodoros N. [1 ,2 ,11 ]
Auer, Dorothee P. [12 ,13 ]
Avula, Shivaram [6 ]
Peet, Andrew C. [1 ,2 ]
机构
[1] Univ Birmingham, Sch Med & Dent Sci, Inst Canc & Genom Sci, Birmingham, W Midlands, England
[2] Birmingham Womens & Childrens NHS Fdn Trust, Oncol, Birmingham, W Midlands, England
[3] Univ Hosp Birmingham NHS Fdn Trust, RRPPS, Birmingham, W Midlands, England
[4] Birmingham Womens & Childrens NHS Fdn Trust, Radiol, Birmingham, W Midlands, England
[5] Aston Univ, Sch Life & Hlth Sci, Dept Psychol, Birmingham, W Midlands, England
[6] Alder Hey Childrens NHS Fdn Trust, Radiol, Liverpool, Merseyside, England
[7] Univ Liverpool, Inst Translat Med, Liverpool, Merseyside, England
[8] Univ Nottingham, Childrens Brain Tumour Res Ctr, Nottingham, England
[9] Royal Victoria Infirm, Sir James Spence Inst Child Hlth, Newcastle Upon Tyne, Tyne & Wear, England
[10] Royal Victoria Infirm, Neuroradiol, Newcastle Upon Tyne, Tyne & Wear, England
[11] Univ Warwick, WMG, Inst Digital Healthcare, Coventry, W Midlands, England
[12] Univ Nottingham, Biomed Res Ctr, Sir Peter Mansfield Imaging Ctr, Nottingham, England
[13] NIHR Nottingham Biomed Res Ctr, Nottingham, England
基金
英国工程与自然科学研究理事会; 英国医学研究理事会; 英国惠康基金; 英国经济与社会研究理事会;
关键词
Perfusion; Diffusion; Machine learning; MRI;
D O I
10.1016/j.nicl.2020.102172
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a radiological challenge, with magnetic resonance imaging playing a key role in providing tumour specific imaging information. Diffusion weighted and perfusion imaging are commonly used to aid the non-invasive diagnosis of children's brain tumours, but are usually evaluated by expert qualitative review. Quantitative studies are mainly single centre and single modally. The aim of this work was to combine multi-centre diffusion and perfusion imaging, with machine learning, to develop machine learning based classifiers to discriminate between three common paediatric tumour types. The results show that diffusion and perfusion weighted imaging of both the tumour and whole brain provide significant features which differ between tumour types, and that combining these features gives the optimal machine learning classifier with > 80% predictive precision. This work represents a step forward to aid in the non-invasive diagnosis of paediatric brain tumours, using advanced clinical imaging.
引用
收藏
页数:6
相关论文
共 26 条
  • [1] Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms
    Bull, Jonathan G.
    Saunders, Dawn E.
    Clark, Christopher A.
    [J]. EUROPEAN RADIOLOGY, 2012, 22 (02) : 447 - 457
  • [2] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    [J]. 2002, American Association for Artificial Intelligence (16)
  • [3] Machine Learning for Medical Imaging1
    Erickson, Bradley J.
    Korfiatis, Panagiotis
    Akkus, Zeynettin
    Kline, Timothy L.
    [J]. RADIOGRAPHICS, 2017, 37 (02) : 505 - 515
  • [4] Faghihi R, 2017, J MED IMAGING RADIAT, V48, P233, DOI 10.1016/j.jmir.2017.06.004
  • [5] Radiomics in paediatric neuro-oncology: A multicentre study on MRI texture analysis
    Fetit, Ahmed E.
    Novak, Jan
    Rodriguez, Daniel
    Auer, Dorothee P.
    Clark, Christopher A.
    Grundy, Richard G.
    Peet, Andrew C.
    Arvanitis, Theodoros N.
    [J]. NMR IN BIOMEDICINE, 2018, 31 (01)
  • [6] Diagnosing relapse in childrens brain tumors using metabolite profiles
    Gill, Simrandip K.
    Wilson, Martin
    Davies, Nigel P.
    MacPherson, Lesley
    English, Martin
    Arvanitis, Theodoros N.
    Peet, Andrew C.
    [J]. NEURO-ONCOLOGY, 2014, 16 (01) : 156 - 164
  • [7] Advanced MRI for Pediatric Brain Tumors with Emphasis on Clinical Benefits
    Goo, Hyun Woo
    Ra, Young-Shin
    [J]. KOREAN JOURNAL OF RADIOLOGY, 2017, 18 (01) : 194 - 207
  • [8] Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain
    Grech-Sollars, Matthew
    Hales, Patrick W.
    Miyazaki, Keiko
    Raschke, Felix
    Rodriguez, Daniel
    Wilson, Martin
    Gill, Simrandip K.
    Banks, Tina
    Saunders, Dawn E.
    Clayden, Jonathan D.
    Gwilliam, Matt N.
    Barrick, Thomas R.
    Morgan, Paul S.
    Davies, Nigel P.
    Rossiter, James
    Auer, Dorothee P.
    Grundy, Richard
    Leach, Martin O.
    Howe, Franklyn A.
    Peet, Andrew C.
    Clark, Chris A.
    [J]. NMR IN BIOMEDICINE, 2015, 28 (04) : 468 - 485
  • [9] Arterial spin labelling and diffusion-weighted imaging in paediatric brain tumours
    Hales, Patrick W.
    d'Arco, Felice
    Cooper, Jessica
    Pfeuffer, Josef
    Hargrave, Darren
    Mankad, Kshitij
    Clark, Chris
    [J]. NEUROIMAGE-CLINICAL, 2019, 22
  • [10] Cerebral tumors: Specific features in children
    Koob, M.
    Girard, N.
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2014, 95 (10) : 965 - 983