Multiple day biclustering of high-frequency financial time series

被引:6
作者
Liu, Haitao [1 ]
Zou, Jian [2 ]
Ravishanker, Nalini [3 ]
机构
[1] Worcester Polytech Inst, Data Sci Program, Worcester, MA 01609 USA
[2] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[3] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
关键词
biclustering; comovement; high-dimensional data; high frequency; time series; MODEL;
D O I
10.1002/sta4.176
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
With recent technological advances, high-frequency transaction-by-transaction data are widely available to investors and researchers. To explore the microstructure of variability of stock prices on transaction-level intra-day data and to dynamically study patterns of comovement over multiple trading days, we propose a multiple day time series biclustering algorithm (CC-MDTSB) that extends the time series biclustering algorithm (CC-TSB). For identifying biclusters within each trading day, our algorithm provides a faster alternative to the random replacement method in the CC-TSB algorithm. Moreover, our algorithm does not require prespecification of the number of biclusters for each trading day. Instead, we set a threshold on the number of stocks within the biclusters to yield an adaptive stopping criterion for multiple day analysis. An analysis of the biclusters determined over multiple trading days enables us to study the dynamic behaviour of stocks over time. We effectively estimate the comovement probability of each m-tuple of stocks conditional on the other stocks within the dynamic biclusters and propose a method to forecast comovement days using a nonparametric double exponential smoothing procedure. Copyright (c) 2018 John Wiley & Sons, Ltd.
引用
收藏
页数:17
相关论文
共 25 条
[1]  
Babu M. Suresh, 2012, International Journal of Advanced Networking and Applications, V3, P1281
[2]   THE GIBBS-PLAID BICLUSTERING MODEL [J].
Chekouo, Thierry ;
Murua, Alejandro ;
Raffelsberger, Wolfgang .
ANNALS OF APPLIED STATISTICS, 2015, 9 (03) :1643-1670
[3]  
Cheng Y., 2000, ISMB
[4]  
Cosmin SG, 2009, ANN U ORADEA EC SCI, V4, P1006
[5]   Clustering of financial time series with application to index and enhanced index tracking portfolio [J].
Dose, C ;
Cincotti, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 355 (01) :145-151
[6]   DIRECT CLUSTERING OF A DATA MATRIX [J].
HARTIGAN, JA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1972, 67 (337) :123-&
[7]   Discovery of time-inconsecutive co-movement patterns of foreign currencies using an evolutionary biclustering method [J].
Huang, Qing-Hua .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) :4353-4364
[8]  
Kohli P, 2016, METHODOL COMPUT APPL, V19, P935
[9]   Diagonal latent block model for binary data [J].
Laclau, Charlotte ;
Nadif, Mohamed .
STATISTICS AND COMPUTING, 2017, 27 (05) :1145-1163
[10]   Biclustering via Sparse Singular Value Decomposition [J].
Lee, Mihee ;
Shen, Haipeng ;
Huang, Jianhua Z. ;
Marron, J. S. .
BIOMETRICS, 2010, 66 (04) :1087-1095