An Energy-Efficient Deep Reinforcement Learning Accelerator With Transposable PE Array and Experience Compression

被引:6
作者
Kim, Changhyeon [1 ]
Kang, Sanghoon [1 ]
Choi, Sungpill [1 ]
Shin, Dongjoo [1 ]
Kim, Youngwoo [1 ]
Yoo, Hoi-Jun [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon 34141, South Korea
来源
IEEE SOLID-STATE CIRCUITS LETTERS | 2019年 / 2卷 / 11期
关键词
Deep learning ASIC; deep learning; deep neural network; mobile deep learning; reinforcement learning;
D O I
10.1109/LSSC.2019.2941252
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter, we propose a low power deep reinforcement learning (DRL) SoC, supporting CNN and learning-optimized RNN, and fully connected layer. The adaptive reuse of weights and inputs, and data encoding/decoding techniques reduces power consumption and peak memory bandwidth of DRL processing by 31% and 41%, respectively. The 65-nm 16-mm(2) chip achieves a peak 2.16 TFLOPS/W at 0.73 V and 204 GFLOPS at 1.1 V with 16-bit data.
引用
收藏
页码:228 / 231
页数:4
相关论文
共 11 条
[1]   Real-time visual tracking by deep reinforced decision making [J].
Choi, Janghoon ;
Kwon, Junseok ;
Lee, Kyoung Mu .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 171 :10-19
[2]  
Fleischer B, 2018, SYMP VLSI CIRCUITS, P35, DOI 10.1109/VLSIC.2018.8502276
[3]  
Lee J., 2008, PROC IEEE INT SOLID, P218
[4]  
Li Y, 2017, P ADV NEUR INF PROC, V30, P3812
[5]  
Lillicrap TP, 2015, ARXIV150902971
[6]  
Mnih V, 2016, PR MACH LEARN RES, V48
[7]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533
[8]  
Schulman J, 2017, ARXIV170706347
[9]  
Ueyoshi K, 2018, ISSCC DIG TECH PAP I, P216, DOI 10.1109/ISSCC.2018.8310261
[10]  
Yuan Z, 2018, SYMP VLSI CIRCUITS, P33, DOI 10.1109/VLSIC.2018.8502404