THE WEAK SIGMA-ATTRACTOR FOR THE SEMI-DISSIPATIVE 2D BOUSSINESQ SYSTEM

被引:3
作者
He, Jinfang [1 ]
Sun, Chunyou [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
Weak sigma-attractor; Boussinesq equations; semi-dissipative system; EQUATIONS; REGULARITY; EXISTENCE;
D O I
10.1090/proc/14807
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the attraction properties for the velocity variable of the 2D Boussinesq equations with viscosity and without heat diffusion in the sense of the strong topology of V and prove that the weak sigma-attractor has a pancake-like structure, which answer partly some questions arising in Biswas et al. [Ann. Inst. H. Poincare Anal. Non Lineaire 34 (2017), pp. 381-405] and enrich the structure of the weak sigma-attractor.
引用
收藏
页码:1219 / 1231
页数:13
相关论文
共 21 条
[1]   On the attractor for the semi-dissipative Boussinesq equations [J].
Biswas, Animikh ;
Foias, Ciprian ;
Larios, Adam .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (02) :381-405
[2]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[3]  
CONSTANTIN P., 1988, Chicago Lectures in Mathematics
[4]   The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity [J].
Danchin, Raphael ;
Paicu, Marius .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2008, 136 (02) :261-309
[5]   Long time behavior of the two-dimensional Boussinesq equations without buoyancy diffusion [J].
Doering, Charles R. ;
Wu, Jiahong ;
Zhao, Kun ;
Zheng, Xiaoming .
PHYSICA D-NONLINEAR PHENOMENA, 2018, 376 :144-159
[6]  
Evans L. C., 2010, GRADUATE STUDIES MAT, V19
[7]   ATTRACTORS FOR THE BENARD-PROBLEM - EXISTENCE AND PHYSICAL BOUNDS ON THEIR FRACTAL DIMENSION [J].
FOIAS, C ;
MANLEY, O ;
TEMAM, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (08) :939-967
[8]  
Hale Jack K., 1988, MATH SURVEYS MONOGRA, V25
[9]  
Hmidi T., 2007, Adv. Diff. Eqs., V12, P461
[10]  
Hou TY, 2005, DISCRETE CONT DYN-A, V12, P1