APPROXIMATION BY GENERALIZED q-SZASZ-MIRAKJAN OPERATORS

被引:0
|
作者
Khan, Taqseer [1 ]
Saif, Mohd [2 ]
Khan, Shuzaat Ali [1 ]
机构
[1] Jamia Millia Islamia, Dept Math, Fac Nat Sci, New Delhi 110025, India
[2] Aligarh Muslim Univ, Fac Engn & Technol, Dept Appl Math, Aligarh 202002, Uttar Pradesh, India
来源
JOURNAL OF MATHEMATICAL ANALYSIS | 2021年 / 12卷 / 06期
关键词
Linear positive operators; q-integrs; q-Szasz-Mirakjan operators; Voronovskaja's theorem; modulus of continuity; (P;
D O I
10.54379/JMA-2021-6-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce generalized q-Szasz-Mirakjan operators and study their approximation properties. Based on the Voronovskaja's theorem, we obtain quantitative estimates for these operators.
引用
收藏
页码:9 / 21
页数:13
相关论文
共 50 条
  • [21] Some results on modified Szasz-Mirakjan operators
    Finta, Zoltan
    Govil, N. K.
    Gupta, Vijay
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) : 1284 - 1296
  • [22] On the q-parametric Stancu type Dunkl generalization of the Kantorovich-Szasz-Mirakjan operators
    Mursaleen, Mohammad
    Khan, Taqseer
    Nasiruzzaman, Md
    JOURNAL OF MATHEMATICAL EXTENSION, 2018, 12 (03) : 105 - 129
  • [23] Approximation by (p,q) Szasz-beta-Stancu operators
    Sharma, Prerna Maheshwari
    Abid, Mohammed
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (01) : 191 - 200
  • [24] Some Approximation Results on q-Beta-Szasz Operators
    Gupta, Vijay
    Yadav, Rani
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2012, 36 (03) : 343 - 352
  • [25] On (p, q)-Szasz-Mirakyan operators and their approximation properties
    Mursaleen, M.
    Al-Abied, A. A. H.
    Alotaibi, Abdullah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [26] Approximation on Durrmeyer modification of generalized Szász-Mirakjan operators
    Yadav, Rishikesh
    Mishra, Vishnu Narayan
    Meher, Ramakanta
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (10) : 8226 - 8248
  • [27] THE VORONOVSKAJA TYPE THEOREM FOR AN EXTENSION OF SZASZ-MIRAKJAN OPERATORS
    Pop, Ovidiu
    Barbosu, Dan
    Miclaus, Dan
    DEMONSTRATIO MATHEMATICA, 2012, 45 (01) : 107 - 115
  • [28] Approximation on a new class of Szasz-Mirakjan operators and their extensions in Kantorovich and Durrmeyer variants with applicable properties
    Mishra, Vishnu Narayan
    Yadav, Rishikesh
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (02) : 245 - 273
  • [30] Better error estimation for Szasz-Mirakjan-Beta operators
    Duman, Oktay
    Ozarslan, Mehmet Ali
    Aktuglu, Hueseyin
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2008, 10 (01) : 53 - 59