Encapsulated graphene field-effect transistors for air stable operation

被引:36
作者
Alexandrou, Konstantinos [1 ]
Petrone, Nicholas [2 ]
Hone, James [2 ]
Kymissis, Ioannis [1 ]
机构
[1] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[2] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
关键词
ROOM-TEMPERATURE; DEVICES; FILMS; TRANSPORT;
D O I
10.1063/1.4915513
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, we report the fabrication of encapsulated graphene field effects transistors (GFETs) with excellent air stability operation in ambient environment. Graphene's 2D nature makes its electronics properties very sensitive to the surrounding environment, and thus, non-encapsulated graphene devices show extensive vulnerability due to unintentional hole doping from the presence of water molecules and oxygen limiting their performance and use in real world applications. Encapsulating GFETs with a thin layer of parylene-C and aluminum deposited on top of the exposed graphene channel area resulted in devices with excellent electrical performance stability for an extended period of time. Moisture penetration is reduced significantly and carrier mobility degraded substantially less when compared to non-encapsulated control devices. Our CMOS compatible encapsulation method minimizes the problems of environmental doping and lifetime performance degradation, enabling the operation of air stable devices for next generation graphene-based electronics. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 31 条
[1]   The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors [J].
Aguirre, Carla M. ;
Levesque, Pierre L. ;
Paillet, Matthieu ;
Lapointe, Francois ;
St-Antoine, Benoit C. ;
Desjardins, Patrick ;
Martel, Richard .
ADVANCED MATERIALS, 2009, 21 (30) :3087-+
[2]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Improvements of permeation barrier coatings using encapsulated parylene interlayers for flexible electronic applications [J].
Chen, Tsai-Ning ;
Wuu, Dong-Sing ;
Wu, Chia-Cheng ;
Chiang, Cheng-Chung ;
Chen, Yung-Pei ;
Horng, Ray-Hua .
PLASMA PROCESSES AND POLYMERS, 2007, 4 (02) :180-185
[6]   Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices [J].
Cheng, Zengguang ;
Zhou, Qiaoyu ;
Wang, Chenxuan ;
Li, Qiang ;
Wang, Chen ;
Fang, Ying .
NANO LETTERS, 2011, 11 (02) :767-771
[7]   Investigation of the influence on graphene by using electron-beam and photo-lithography [J].
Fan, Jiyu ;
Michalik, J. M. ;
Casado, L. ;
Roddaro, S. ;
Ibarra, M. R. ;
De Teresa, J. M. .
SOLID STATE COMMUNICATIONS, 2011, 151 (21) :1574-1578
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Thin-film encapsulation of organic light-emitting devices [J].
Ghosh, AP ;
Gerenser, LJ ;
Jarman, CM ;
Fornalik, JE .
APPLIED PHYSICS LETTERS, 2005, 86 (22) :1-3
[10]   Hybrid graphene/organic semiconductor field-effect transistors [J].
Ha, Tae-Jun ;
Akinwande, Deji ;
Dodabalapur, Ananth .
APPLIED PHYSICS LETTERS, 2012, 101 (03)