Synthesis of pure titanium carbide and titanium carbide/hydride core-shell nanoparticles via the flow-levitation method, and their characterization

被引:8
作者
Zhigach, A. N. [1 ]
Leipunsky, I. O. [1 ]
Kuskov, M. L. [1 ]
Berezkina, N. G. [1 ]
Afanasenkova, E. S. [1 ]
Safronova, O. A. [1 ]
Kudrov, B., V [1 ]
Lopez, G. W. [2 ]
Skryleva, E. A. [3 ]
机构
[1] Russian Acad Sci, VL Talrose Inst Energy Problems Chem Phys, NN Semenov Fed Res Ctr Chem Phys, 38,Bld 2 Leninsky Prospect, Moscow 119334, Russia
[2] Northeastern Univ, Coll Profess Studies, 360 Huntington Ave, Boston, MA 02115 USA
[3] Natl Univ Sci & Technol MISiS, 4 Leninsky Prospect, Moscow 119049, Russia
关键词
Titanium carbide; Nanostructured materials; Nanofabrication; Photoelectron spectroscopies; Transmission electron microscopy; X-ray diffraction; TIC NANOPARTICLES; POWDER; NANOSTRUCTURES; PURIFICATION; FOAMABILITY; PERFORMANCE; NANOPOWDERS; PARTICLES; MECHANISM; PLASMA;
D O I
10.1016/j.jallcom.2019.153054
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The objective of this work is to synthesize pure stoichiometric titanium carbide and stoichiometric titanium carbide/hydride core-shell nanoparticles using the Guen-Miller Flow-Levitation method. The nanoparticulate are obtained via chemical reaction between nascent titanium nanoparticles and tailored gaseous hydrocarbons. Characterization of the nanoparticles is performed using analytical techniques including transmission electron microscopy, electron and X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis and specific surface area analysis. The results confirm the single-crystal nature and purity of the titanium carbide nanoparticles and demonstrate the coherence of single crystal titanium carbide core and titanium hydride shell in the TiC/TiH2 core-shell nanoparticles. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 41 条
[1]   High temperature stable WC1-x@C and TiC@C core-shell nanoparticles by pulsed plasma in liquid [J].
Abdullaeva, Zhypargul ;
Omurzak, Emil ;
Iwamoto, Chihiro ;
Okudera, Hiroki ;
Koinuma, Michio ;
Takebe, Shintaro ;
Sulaimankulova, Saadat ;
Mashimo, Tsutomu .
RSC ADVANCES, 2013, 3 (02) :513-519
[2]  
Allen T, 2003, Powder Sampling and Particle Size Measurement, P682
[3]   Synthesis of a porous tube based on powdered titanium carbide [J].
Alymov M.I. ;
Shustov V.S. ;
Ankudinov A.B. ;
Zelenskii V.A. .
Inorganic Materials: Applied Research, 2011, 2 (5) :94-96
[4]   Synthesis of Titanium Carbide Nanopowders and Production of Porous Materials on Their Basis [J].
Alymov, M. I. ;
Shustov, V. S. ;
Kasimtsev, A. V. ;
Zhigunov, V. V. ;
Ankudinov, A. B. ;
Zelenskii, V. A. .
NANOTECHNOLOGIES IN RUSSIA, 2011, 6 (1-2) :130-136
[5]  
Asavavisithchai S, 2010, CHIANG MAI J SCI, V37, P213
[6]  
Babcsán N, 2007, T INDIAN I METALS, V60, P127
[7]   Insights into the Li+ storage mechanism of TiC@C-TiO2 core-shell nanostructures as high performance anodes [J].
Cao, Songjie ;
Xue, Zhe ;
Yang, Chengwu ;
Qin, Jiaqian ;
Zhang, Long ;
Yu, Pengfei ;
Wang, Shanmin ;
Zhao, Yusheng ;
Zhang, Xinyu ;
Liu, Riping .
NANO ENERGY, 2018, 50 :25-34
[8]   Synthesis and characterization of TiC nanopowders via sol-gel and subsequent carbothermal reduction process [J].
Chen, Xu ;
Fan, Jinglian ;
Lu, Qiong .
JOURNAL OF SOLID STATE CHEMISTRY, 2018, 262 :44-52
[9]   Formation of Titanium Carbide (TiC) and TiC@C core-shell nanostructures by ultra-short laser ablation of titanium carbide and metallic titanium in liquid [J].
De Bonis, Angela ;
Santagata, Antonio ;
Galasso, Agostino ;
Laurita, Alessandro ;
Teghil, Roberto .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 489 :76-84
[10]   Preparation of TiC/W core-shell structured powders by one-step activation and chemical reduction process [J].
Ding, Xiao-Yu ;
Luo, Lai-Ma ;
Huang, Li-Mei ;
Luo, Guang-Nan ;
Zhu, Xiao-Yong ;
Cheng, Ji-Gui ;
Wu, Yu-Cheng .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 619 :704-708