High-speed excited multi-solitons in competitive power nonlinear Schrodinger equations

被引:2
作者
Bai, Mengxue [1 ]
Zhang, Jian [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 04期
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Excited states; Bootstrap argument; Compactness method; Multi-solitons; 3-DIMENSIONAL SPINNING SOLITONS; SOLITARY WAVES; CONSTRUCTION; EXISTENCE;
D O I
10.1007/s00033-022-01774-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the competitive power nonlinear Schrodinger equation, which originates from the cubic-quintic model in physics. The equation admits infinitely many excited solitons, and the Cauchy problem is globally well-posed in the energy space. In terms of Cote and Le Coz's argument, high-speed excited multi-solitons of the equation are constructed, which extend Cote and Le Coz's results from the focusing nonlinear cases to the competitive nonlinear cases combining the focusing nonlinearities and defocusing nonlinearities.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Stability of Algebraic Solitons for Nonlinear Schrodinger Equations of Derivative Type: Variational Approach [J].
Hayashi, Masayuki .
ANNALES HENRI POINCARE, 2022, 23 (12) :4249-4277
[42]   General N-solitons and their dynamics in several nonlocal nonlinear Schrodinger equations [J].
Yang, Jianke .
PHYSICS LETTERS A, 2019, 383 (04) :328-337
[43]   Fast-moving finite and infinite trains of solitons for nonlinear Schrodinger equations [J].
Le Coz, Stefan ;
Li, Dong ;
Tsai, Tai-Peng .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (06) :1251-1282
[44]   Small solutions of nonlinear Schrodinger equations near first excited states [J].
Nakanishi, Kenji ;
Tuoc Van Phan ;
Tsai, Tai-Peng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (03) :703-781
[45]   LOCAL EXISTENCE THEORY FOR DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS WITH NONINTEGER POWER NONLINEARITIES [J].
Ambrose, David M. ;
Simpson, Gideon .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (03) :2241-2264
[46]   Instability of algebraic standing waves for nonlinear Schrodinger equations with triple power nonlinearities [J].
Tin, Phan Van .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (03) :449-466
[47]   MULTI-BUBBLE BOURGAIN-WANG SOLUTIONS TO NONLINEAR SCHRODINGER EQUATIONS [J].
Roeckner, Michael ;
Su, Yiming ;
Zhang, Deng .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (01) :517-588
[48]   Ground State and Geometrically Distinct Solitons of Discrete Nonlinear Schrodinger Equations with Saturable Nonlinearities [J].
Chen, Guanwei ;
Ma, Shiwang .
STUDIES IN APPLIED MATHEMATICS, 2013, 131 (04) :389-413
[49]   Revisiting asymptotic stability of solitons of nonlinear Schrodinger equations via refined profile method [J].
Cuccagna, Scipio ;
Maeda, Masaya .
JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (02)
[50]   Generalized and multi-oscillation solitons in the nonlinear Schrodinger equation with quartic dispersion [J].
Bandara, Ravindra ;
Giraldo, Andrus ;
Broderick, Neil G. R. ;
Krauskopf, Bernd .
CHAOS, 2023, 33 (07)