High-speed excited multi-solitons in competitive power nonlinear Schrodinger equations

被引:2
作者
Bai, Mengxue [1 ]
Zhang, Jian [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 04期
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Excited states; Bootstrap argument; Compactness method; Multi-solitons; 3-DIMENSIONAL SPINNING SOLITONS; SOLITARY WAVES; CONSTRUCTION; EXISTENCE;
D O I
10.1007/s00033-022-01774-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the competitive power nonlinear Schrodinger equation, which originates from the cubic-quintic model in physics. The equation admits infinitely many excited solitons, and the Cauchy problem is globally well-posed in the energy space. In terms of Cote and Le Coz's argument, high-speed excited multi-solitons of the equation are constructed, which extend Cote and Le Coz's results from the focusing nonlinear cases to the competitive nonlinear cases combining the focusing nonlinearities and defocusing nonlinearities.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Conditional stability of multi-solitons for the 1D NLKG equation with double power nonlinearity [J].
Yuan, Xu .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (05) :1487-1524
[22]   Analyzing the dynamics of multi-solitons and other solitons in the perturbed nonlinear Schrödinger equation [J].
Rehman, Hamood Ur ;
Iqbal, Ifrah ;
Medani, Mohamed ;
Awan, Aziz Ullah ;
Perveen, Uzma ;
Alroobaea, Roobaea .
MODERN PHYSICS LETTERS B, 2025, 39 (12)
[23]   Asymptotic reductions and solitons of nonlocal nonlinear Schrodinger equations [J].
Horikis, Theodoros P. ;
Frantzeskakis, Dimitrios J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (20)
[24]   The stability of degenerate solitons for derivative nonlinear Schrodinger equations [J].
Kim, Taegyu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 539 (01)
[25]   Discrete solitons for periodic discrete nonlinear Schrodinger equations [J].
Mai, Ali ;
Zhou, Zhan .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 :34-41
[26]   Instability of degenerate solitons for nonlinear Schrodinger equations with derivative [J].
Fukaya, Noriyoshi ;
Hayashi, Masayuki .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 222
[27]   Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons [J].
Friederich, Xavier .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (05) :1525-1552
[28]   Discrete solitons in nonlinear Schrodinger lattices with a power-law nonlinearity [J].
Cuevas, J. ;
Kevrekidis, P. G. ;
Frantzeskakis, D. J. ;
Malomed, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (01) :67-76
[29]   Fast Inverse Nonlinear Fourier Transform for Generating Multi-Solitons in Optical Fiber [J].
Wahls, Sander ;
Poor, H. Vincent .
2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, :1676-1680
[30]   Nonlinear stability of smooth multi-solitons for the Dullin-Gottwald-Holm equation [J].
Wu, Zhi-Jia ;
Tian, Shou-Fu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 412 :408-446