Formation of SUS304/Aluminum Alloys Using Wire and Arc Additive Manufacturing

被引:7
|
作者
Hao, Zhizhuang [1 ,2 ]
Ao, Sansan [1 ,2 ]
Cai, Yangchuan [1 ,2 ]
Zhang, Wei [1 ,2 ]
Luo, Zhen [1 ,2 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Adv Joining Technol, Tianjin 300350, Peoples R China
来源
METALS | 2018年 / 8卷 / 08期
关键词
wire and arc additive manufacturing; SUS 304/aluminum alloys; mechanical properties; electrochemical corrosion; MECHANICAL-PROPERTIES; FE3AL-BASED ALLOYS; METAL; LAYER; FEAL; MICROSTRUCTURE; TI-6AL-4V; POWDER; FE3AL;
D O I
10.3390/met8080595
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, wire and arc additive manufacturing (WAAM) was used to form SUS304/aluminum alloys. The buildup wall was well shaped using a pulse current consisting of a base current of 150 A and peak current of 200 A and a 0.2 m/min travel speed. Metallographic observation revealed that the original grains were columnar grains and transformed into equiaxed grains in the top area. The increased content of alloying elements in the fused layer improved the hardness of the buildup wall. The buildup wall formed using pulsed current exhibited improved anti-electrochemical corrosion performance when compared with that formed using constant current. The tensile strength of the alloy decreased but its elongation increased compared with those of Fe-Al alloys. The tensile fracture along the fusing direction was plastic fracture. However, the tensile fracture perpendicular to the fusing direction consisted of a combination of plastic and brittle fracture.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Effect of interlayer rapid cooling on the microstructure and properties of aluminum alloys produced by wire arc additive manufacturing
    Sun, Guorui
    Sun, Xiaoyu
    Zhao, Xiaohui
    Chen, Chao
    MANUFACTURING LETTERS, 2024, 40 : 70 - 74
  • [22] A Finite Element Study of Wire Arc Additive Manufacturing of Aluminum Alloy
    Han, Yousung
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [23] Normalized evaluation for wire arc additive manufacturing of 2319 aluminum alloy
    Lyu, Feiyue
    Wang, Leilei
    Dou, Zhiwei
    Liu, Shengxin
    Du, Mingzhen
    Gao, Chuanyun
    Zhan, Xiaohong
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (03): : 137 - 148
  • [24] Wire arc additive manufacturing (WAAM) of nanotreated aluminum alloy 6061
    Chi, Yitian
    Murali, Narayanan
    Liu, Jingke
    Liese, Maximilian
    Li, Xiaochun
    RAPID PROTOTYPING JOURNAL, 2023, 29 (07) : 1341 - 1349
  • [25] Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)
    Cam, Gurel
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 77 - 85
  • [26] Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)
    Cam, Gurel
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 77 - 85
  • [27] Wire and Arc Additive Manufacturing of Cylindrical Aluminum Alloy Lattice Structure
    Tang L.
    Yu S.
    Zheng B.
    Shi Y.
    Chen Y.
    Zhang L.
    Xiyou Jinshu/Chinese Journal of Rare Metals, 2023, 47 (04): : 465 - 474
  • [28] A Review on Wire Arc Additive Manufacturing of Magnesium Alloys: Wire Preparation, Defects and Properties
    Li, Yi
    Yin, Siqi
    Zhang, Guangzong
    Wang, Changfeng
    Liu, Xiao
    Guan, Renguo
    METALS AND MATERIALS INTERNATIONAL, 2024, 30 (12) : 3243 - 3267
  • [29] Wire Arc Additive Manufacturing - A revolutionary method in additive manufacturing
    Kumar, Nilesh
    Bhavsar, Het
    Mahesh, P. V. S.
    Srivastava, Ashish Kumar
    Bora, Bhaskor J.
    Saxena, Ambuj
    Rai, Amit
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 285
  • [30] A Novel Bonding Method of Pure Aluminum and SUS304 Stainless Steel Using Barrel Nitriding
    Jung Hyun Kong
    Masahiro Okumiya
    Yoshiki Tsunekawa
    Ky Youl Yun
    Sang Gweon Kim
    Masashi Yoshida
    Metallurgical and Materials Transactions A, 2014, 45 : 4443 - 4453