Formation of SUS304/Aluminum Alloys Using Wire and Arc Additive Manufacturing

被引:7
|
作者
Hao, Zhizhuang [1 ,2 ]
Ao, Sansan [1 ,2 ]
Cai, Yangchuan [1 ,2 ]
Zhang, Wei [1 ,2 ]
Luo, Zhen [1 ,2 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Adv Joining Technol, Tianjin 300350, Peoples R China
来源
METALS | 2018年 / 8卷 / 08期
关键词
wire and arc additive manufacturing; SUS 304/aluminum alloys; mechanical properties; electrochemical corrosion; MECHANICAL-PROPERTIES; FE3AL-BASED ALLOYS; METAL; LAYER; FEAL; MICROSTRUCTURE; TI-6AL-4V; POWDER; FE3AL;
D O I
10.3390/met8080595
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, wire and arc additive manufacturing (WAAM) was used to form SUS304/aluminum alloys. The buildup wall was well shaped using a pulse current consisting of a base current of 150 A and peak current of 200 A and a 0.2 m/min travel speed. Metallographic observation revealed that the original grains were columnar grains and transformed into equiaxed grains in the top area. The increased content of alloying elements in the fused layer improved the hardness of the buildup wall. The buildup wall formed using pulsed current exhibited improved anti-electrochemical corrosion performance when compared with that formed using constant current. The tensile strength of the alloy decreased but its elongation increased compared with those of Fe-Al alloys. The tensile fracture along the fusing direction was plastic fracture. However, the tensile fracture perpendicular to the fusing direction consisted of a combination of plastic and brittle fracture.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Microstructure and corrosion resistance properties of 5356 aluminum alloy fabricated by wire and arc additive manufacturing
    Liang, Jingheng
    Zheng, Ziqin
    Xu, Zhibao
    Wang, Shuai
    Han, Han
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2025, 53 (02): : 115 - 124
  • [22] Force enhanced wire laser additive manufacturing of aluminum and titanium alloys
    Zhao, Zhe
    Xu, Shuoheng
    Liu, Jian
    Zhang, Xiaohan
    Xia, Min
    Hu, Yaowu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [23] Microstructure and properties of 6061 aluminum alloy by MIG wire and arc additive manufacturing
    He P.
    Bai X.
    Zhou X.
    Zhang H.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2022, 43 (02): : 50 - 54
  • [24] Characterization of 5356 Aluminum Walls Produced by Wire Arc Additive Manufacturing (WAAM)
    Wieczorowski, Michal
    Pereira, Alejandro
    Carou, Diego
    Gapinski, Bartosz
    Ramirez, Ignacio
    MATERIALS, 2023, 16 (07)
  • [25] A Review of Aluminum Alloy Fabricated by Different Processes of Wire Arc Additive Manufacturing
    Wang, Zeli
    Zhang, Yuanbin
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2021, 27 (01): : 18 - 26
  • [26] Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: a review
    Omiyale, B. O.
    Olugbade, T. O.
    Abioye, T. E.
    Farayibi, P. K.
    MATERIALS SCIENCE AND TECHNOLOGY, 2022, 38 (07) : 391 - 408
  • [27] Study on properties of 304 wire arc additive manufacturing stainless steel TIG welded joints
    Chen, Yunhao
    Zhao, Xiaohui
    Yang, Bin
    Liu, Yu
    Liang, Yongchang
    Li, Ziwei
    Chen, Chao
    MATERIALS LETTERS, 2024, 361
  • [28] Effect of process parameters on mechanical properties of 5554 aluminum alloy fabricated by wire arc additive manufacturing
    Sabanci, Omer
    Hacibekir, Cemil
    Kechagia, Onour
    Tekelioglu, Orkun
    Yuce, Celalettin
    MATERIALS TESTING, 2025,
  • [29] Effect of Travel Speed on the Properties of 5087 Aluminum Alloy Walls Produced by Wire and Arc Additive Manufacturing
    Sahul, Miroslav
    Pavlik, Marian
    Sahul, Martin
    Kovacocy, Pavel
    Martinkovic, Maros
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 33 (16) : 8582 - 8600
  • [30] Wire and Arc Additive Manufacturing of High-Strength Al-Zn-Mg Aluminum Alloy
    Fang, Xuewei
    Chen, Guopeng
    Yang, Jiannan
    Xie, Yang
    Huang, Ke
    Lu, Bingheng
    FRONTIERS IN MATERIALS, 2021, 8 (08):