Sentinel-2 Images at 2.5m Spatial Resolution via Deep- Learning: A Case Study in Zakythnos

被引:2
作者
Panagiotopoulou, Antigoni [1 ,2 ]
Bratsolis, Emmanuel [1 ]
Grammatikopoulos, Lazaros [1 ]
Petsa, Eleni [1 ]
Charou, Eleni [2 ]
Poirazidis, Konstantinos [3 ]
Martinis, Aristotelis [3 ]
Madamopoulos, Nicholas [4 ,5 ]
机构
[1] Univ West Attica, Dept Surveying & Geoinformat Engn, Athens, Greece
[2] NCSR Demokritos, Inst Informat & Telecommun, Athens, Greece
[3] Ionian Univ, Dept Environm, Zakynthos, Greece
[4] Hellen Air Force Acad, Dept Aeronaut Sci, Dekeleia, Greece
[5] CUNY City Coll, Dept Elect Engn, New York, NY USA
来源
2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP) | 2022年
关键词
Sentinel-2; deep-learning; super-resolution; normalized carotenoid reflectance index; olive tree;
D O I
10.1109/IVMSP54334.2022.9816272
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
High-resolution (HR) satellite images can provide detailed information about land usage/land cover. Often, it is necessary that the satellite sensor inherent spatial resolution is increased through algorithmic processing of the image data acquired. Machine-learning and in particular deep-learning based super-resolution (SR) techniques are an effective tool for increasing the spatial resolution of images. In the current work, Sentinel-2 images are super-resolved to spatial resolution equal to 2.5 m/pixel by means of deep-learning based SR techniques. The area of study is Zakynthos island in Greece. A novel index called Normalized Carotenoid Reflectance Index (NCRI) is proposed for the assessment of land cover by olive trees.
引用
收藏
页数:5
相关论文
共 14 条
[1]  
[Anonymous], US
[2]   Densely Residual Laplacian Super-Resolution [J].
Anwar, Saeed ;
Barnes, Nick .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (03) :1192-1204
[3]  
Bratsolis E, 2018, IEEE IMAGE PROC, P2521, DOI 10.1109/ICIP.2018.8451729
[4]   Progressive spatiotemporal image fusion with deep neural networks [J].
Cai, Jiajun ;
Huang, Bo ;
Fung, Tung .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
[5]  
Galar M., 2019, Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., VXLII-2, P95, DOI 10.5194/isprs-archives-XLII-2-W16-95-2019
[6]   Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network [J].
Lanaras, Charis ;
Bioucas-Dias, Jose ;
Galliani, Silvano ;
Baltsavias, Emmanuel ;
Schindler, Konrad .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 146 :305-319
[7]  
Navrozidis I, 2019, INT GEOSCI REMOTE SE, P7220, DOI [10.1109/igarss.2019.8898076, 10.1109/IGARSS.2019.8898076]
[8]  
Panagiotopoulou A., 2021, LECT NOTES COMPUT, V12667
[9]   Deep-Learning Based Super-Resolution of Sentinel-2 Images for Monitoring Supercentenarian Olive Trees [J].
Panagiotopoulou, Antigoni ;
Charou, Eleni ;
Poirazidis, Konstantinos ;
Voutos, Yorghos ;
Martinis, Aristotelis ;
Grammatikopoulos, Lazaros ;
Petsa, Eleni ;
Bratsolis, Emmanuel ;
Mylonas, Phivos .
25TH PAN-HELLENIC CONFERENCE ON INFORMATICS WITH INTERNATIONAL PARTICIPATION (PCI2021), 2021, :143-148
[10]   Remote sensing images super-resolution with deep convolution networks [J].
Ran, Qiong ;
Xu, Xiaodong ;
Zhao, Shizhi ;
Li, Wei ;
Du, Qian .
MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (13-14) :8985-9001