Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7

被引:22
作者
Grigonyte, Aurelija M. [1 ,2 ]
Harrison, Christian [3 ]
MacDonald, Paul R. [4 ]
Montero-Blay, Ariadna [5 ]
Tridgett, Matthew [1 ,2 ]
Duncan, John [1 ,2 ]
Sagona, Antonia P. [1 ,2 ]
Constantinidou, Chrystala [6 ]
Jaramillo, Alfonso [1 ,2 ,7 ,8 ]
Millard, Andrew [3 ]
机构
[1] Univ Warwick, Warwick Integrat Synthet Biol Ctr WISB, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England
[3] Univ Leicester, Dept Genet & Genome Biol, Univ Rd, Leicester LE1 7RH, Leics, England
[4] Univ Warwick, MOAC DTC, Senate House, Coventry CV4 7AL, W Midlands, England
[5] Barcelona Inst Sci & Technol, CRG, Syst Biol Res Unit, EMBL, Dr Aiguader 88, Barcelona 08003, Spain
[6] Univ Warwick, Warwick Med Sch, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
[7] Univ Paris Saclay, CEA, CNRS, ISSB, F-91025 Evry, France
[8] Univ Valencia, CSIC, Inst Integrat Syst Biol I2SysBio, Paterna 46980, Spain
来源
VIRUSES-BASEL | 2020年 / 12卷 / 02期
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会; 英国医学研究理事会; 欧盟地平线“2020”;
关键词
bacteriophage; CRISPR; T7; tail fibres; YERSINIA-PESTIS; CAS; SCREENS; REPRESSOR; THERAPY; GENOMES; GROWTH;
D O I
10.3390/v12020193
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
With the recent rise in interest in using lytic bacteriophages as therapeutic agents, there is an urgent requirement to understand their fundamental biology to enable the engineering of their genomes. Current methods of phage engineering rely on homologous recombination, followed by a system of selection to identify recombinant phages. For bacteriophage T7, the host genes cmk or trxA have been used as a selection mechanism along with both type I and II CRISPR systems to select against wild-type phage and enrich for the desired mutant. Here, we systematically compare all three systems; we show that the use of marker-based selection is the most efficient method and we use this to generate multiple T7 tail fibre mutants. Furthermore, we found the type II CRISPR-Cas system is easier to use and generally more efficient than a type I system in the engineering of phage T7. These results provide a foundation for the future, more efficient engineering of bacteriophage T7.
引用
收藏
页数:13
相关论文
共 61 条
[1]   Phage Therapy Pharmacology [J].
Abedon, Stephen T. ;
Thomas-Abedon, Cameron .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2010, 11 (01) :28-47
[2]   Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing [J].
Ando, Hiroki ;
Lemire, Sebastien ;
Pires, Diana P. ;
Lu, Timothy K. .
CELL SYSTEMS, 2015, 1 (03) :187-196
[3]   Recombineering A powerful tool for modification of bacteriophage genomes [J].
不详 .
BIOENGINEERED, 2012, 3 (03) :137-137
[4]   Optimizing DNA transduction by selection of mutations that evade bacterial defense systems [J].
Auster, Oren ;
Globus, Rea ;
Yosef, Ido ;
Qimron, Udi .
RNA BIOLOGY, 2019, 16 (04) :595-599
[5]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[6]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[7]   Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10 [J].
Bari, S. M. Nayeemul ;
Walker, Forrest C. ;
Cater, Katie ;
Aslan, Barbaros ;
Hatoum-Aslan, Asma .
ACS SYNTHETIC BIOLOGY, 2017, 6 (12) :2316-2325
[8]   Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering [J].
Box, Allison M. ;
McGuffie, Matthew J. ;
O'Hara, Brendan J. ;
Seed, Kimberley D. .
JOURNAL OF BACTERIOLOGY, 2016, 198 (03) :578-590
[9]   Small CRISPR RNAs guide antiviral defense in prokaryotes [J].
Brouns, Stan J. J. ;
Jore, Matthijs M. ;
Lundgren, Magnus ;
Westra, Edze R. ;
Slijkhuis, Rik J. H. ;
Snijders, Ambrosius P. L. ;
Dickman, Mark J. ;
Makarova, Kira S. ;
Koonin, Eugene V. ;
van der Oost, John .
SCIENCE, 2008, 321 (5891) :960-964
[10]   Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9 [J].
Bryson, Alexandra L. ;
Hwang, Young ;
Sherrill-Mix, Scott ;
Wu, Gary D. ;
Lewis, James D. ;
Black, Lindsay ;
Clark, Tyson A. ;
Bushman, Frederic D. .
MBIO, 2015, 6 (03)