Combining current knowledge on DNA methylation-based age estimation towards the development of a superior forensic DNA intelligence tool

被引:28
作者
Aliferi, Anastasia [1 ]
Sundaram, Sudha [1 ]
Ballard, David [1 ]
Freire-Aradas, Ana [2 ]
Phillips, Christopher [2 ]
Victoria Lareu, Maria [2 ]
Court, Denise Syndercombe [1 ]
机构
[1] Kings Coll London, Fac Life Sci & Med, Dept Analyt Environm & Forens Sci, Kings Forens, London, England
[2] Univ Santiago de Compostela, Inst Forens Sci, Forens Genet Unit, Galicia, Spain
关键词
Age prediction; DNA methylation; Machine learning; Forensic; DNA intelligence; EPIGENETIC AGE; CIGARETTE-SMOKING; CHRONOLOGICAL AGE; WIDE ASSOCIATION; METHYLOME-WIDE; PREDICTION; BLOOD; GENOME; DISEASE; MARKERS;
D O I
10.1016/j.fsigen.2021.102637
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The estimation of chronological age from biological fluids has been an important quest for forensic scientists worldwide, with recent approaches exploiting the variability of DNA methylation patterns with age in order to develop the next generation of forensic 'DNA intelligence' tools for this application. Drawing from the conclusions of previous work utilising massively parallel sequencing (MPS) for this analysis, this work introduces a DNA methylation-based age estimation method for blood that exhibits the best combination of prediction accuracy and sensitivity reported to date. Statistical evaluation of markers from 51 studies using microarray data from over 4000 individuals, followed by validation using in-house generated MPS data, revealed a final set of 11 markers with the greatest potential for accurate age estimation from minimal DNA material. Utilising an algorithm based on support vector machines, the proposed model achieved an average error (MAE) of 3.3 years, with this level of accuracy retained down to 5 ng of starting DNA input (similar to 1 ng PCR input). The accuracy of the model was retained (MAE = 3.8 years) in a separate test set of 88 samples of Spanish origin, while predictions for donors of greater forensic interest (< 55 years of age) displayed even higher accuracy (MAE = 2.6 years). Finally, no sex-related bias was observed for this model, while there were also no signs of variation observed between control and disease-associated populations for schizophrenia, rheumatoid arthritis, frontal temporal dementia and progressive supranuclear palsy in microarray data relating to the 11 markers.
引用
收藏
页数:14
相关论文
共 120 条
  • [1] Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5 years after birth in human blood leukocytes
    Acevedo, Nathalie
    Reinius, Lovisa E.
    Vitezic, Morana
    Fortino, Vittorio
    Soderhall, Cilla
    Honkanen, Hanna
    Veijola, Riitta
    Simell, Olli
    Toppari, Jorma
    Ilonen, Jorma
    Knip, Mikael
    Scheynius, Annika
    Hyoty, Heikki
    Greco, Dario
    Kere, Juha
    [J]. CLINICAL EPIGENETICS, 2015, 7
  • [2] DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning models
    Aliferi, Anastasia
    Ballard, David
    Gallidabino, Matteo D.
    Thurtle, Helen
    Barron, Leon
    Court, Denise Syndercombe
    [J]. FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2018, 37 : 215 - 226
  • [3] Age-associated DNA methylation in pediatric populations
    Alisch, Reid S.
    Barwick, Benjamin G.
    Chopra, Pankaj
    Myrick, Leila K.
    Satten, Glen A.
    Conneely, Karen N.
    Warren, Stephen T.
    [J]. GENOME RESEARCH, 2012, 22 (04) : 623 - 632
  • [4] Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity
    Almen, Markus Sallman
    Nilsson, Emil K.
    Jacobsson, Josefin A.
    Kalnina, Ineta
    Klovins, Janis
    Fredriksson, Robert
    Schioth, Helgi B.
    [J]. GENE, 2014, 548 (01) : 61 - 67
  • [5] A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival
    Anjum, Shahzia
    Fourkala, Evangelia-Ourania
    Zikan, Michal
    Wong, Andrew
    Gentry-Maharaj, Aleksandra
    Jones, Allison
    Hardy, Rebecca
    Cibula, David
    Kuh, Diana
    Jacobs, Ian J.
    Teschendorff, Andrew E.
    Menon, Usha
    Widschwendter, Martin
    [J]. GENOME MEDICINE, 2014, 6
  • [6] ATKINSON K, 1986, BRIT J HAEMATOL, V63, P231
  • [7] NCBI GEO: archive for functional genomics data sets-update
    Barrett, Tanya
    Wilhite, Stephen E.
    Ledoux, Pierre
    Evangelista, Carlos
    Kim, Irene F.
    Tomashevsky, Maxim
    Marshall, Kimberly A.
    Phillippy, Katherine H.
    Sherman, Patti M.
    Holko, Michelle
    Yefanov, Andrey
    Lee, Hyeseung
    Zhang, Naigong
    Robertson, Cynthia L.
    Serova, Nadezhda
    Davis, Sean
    Soboleva, Alexandra
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D991 - D995
  • [8] Becker KG, 2004, NAT GENET, V36, P431, DOI 10.1038/ng0504-431
  • [9] Improved age determination of blood and teeth samples using a selected set of DNA methylation markers
    Bekaert, Bram
    Kamalandua, Aubeline
    Zapico, Sara C.
    Van de Voorde, Wim
    Decorte, Ronny
    [J]. EPIGENETICS, 2015, 10 (10) : 922 - 930
  • [10] Differential methylation of the TRPA1 promoter in pain sensitivity
    Bell, J. T.
    Loomis, A. K.
    Butcher, L. M.
    Gao, F.
    Zhang, B.
    Hyde, C. L.
    Sun, J.
    Wu, H.
    Ward, K.
    Harris, J.
    Scollen, S.
    Davies, M. N.
    Schalkwyk, L. C.
    Mill, J.
    Williams, F. M. K.
    Li, N.
    Deloukas, P.
    Beck, S.
    McMahon, S. B.
    Wang, J.
    John, S. L.
    Spector, T. D.
    [J]. NATURE COMMUNICATIONS, 2014, 5