Artificial intelligence for hepatitis evaluation

被引:9
作者
Liu, Wei [1 ]
Liu, Xue [1 ]
Peng, Mei [1 ]
Chen, Gong-Quan [2 ]
Liu, Peng-Hua [3 ]
Cui, Xin-Wu [4 ]
Jiang, Fan [1 ]
Dietrich, Christoph F. [5 ]
机构
[1] Anhui Med Univ, Hosp 2, Dept Med Ultrasound, Hefei 230601, Anhui, Peoples R China
[2] Hubei Minzu Univ, Minda Hosp, Dept Med Ultrasound, Enshi 445000, Hubei, Peoples R China
[3] Shaoyang Univ, Affiliated Hosp 1, Dept Med Ultrasound, Shaoyang 422000, Hunan, Peoples R China
[4] Huazhong Univ Sci & Technol, Tongji Med Coll, Tongji Hosp, Sino German Tongji Caritas Res Ctr Ultrasound Med, 1095 Jiefang Ave, Wuhan 430030, Hubei, Peoples R China
[5] Kliniken Hirslanden Beau Site, Dept Allgemeine Innere Med, Salem & Permanence, CH-3626 Bern, Switzerland
基金
中国国家自然科学基金;
关键词
Machine learning; Deep learning; Radiomics; Hepatitis; Fibrosis; Hepatocellular carcinoma; CONVOLUTIONAL NEURAL-NETWORK; LIVER FIBROSIS; B-VIRUS; HEPATOCELLULAR-CARCINOMA; TRANSIENT ELASTOGRAPHY; RADIOMICS MODEL; PREDICTION; RISK; CT;
D O I
10.3748/wjg.v27.i34.5715
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Recently, increasing attention has been paid to the application of artificial intelligence (AI) to the diagnosis of diverse hepatic diseases, which comprises traditional machine learning and deep learning. Recent studies have shown the possible value of AI based data mining in predicting the incidence of hepatitis, classifying the different stages of hepatitis, diagnosing or screening for hepatitis, forecasting the progression of hepatitis, and predicting response to antiviral drugs in chronic hepatitis C patients. More importantly, AI based on radiology has been proven to be useful in predicting hepatitis and liver fibrosis as well as grading hepatocellular carcinoma (HCC) and differentiating it from benign liver tumors. It can predict the risk of vascular invasion of HCC, the risk of hepatic encephalopathy secondary to hepatitis B related cirrhosis, and the risk of liver failure after hepatectomy in HCC patients. In this review, we summarize the application of AI in hepatitis, and identify the challenges and future perspectives.
引用
收藏
页码:5715 / 5726
页数:13
相关论文
共 50 条
  • [21] Revisiting artificial intelligence diagnosis of hepatocellular carcinoma with DIKWH framework
    Shen, Xiaomin
    Wu, Jinxin
    Su, Junwei
    Yao, Zhenyu
    Huang, Wei
    Zhang, Li
    Jiang, Yiheng
    Yu, Wei
    Li, Zhao
    [J]. FRONTIERS IN GENETICS, 2023, 14
  • [22] Emerging artificial intelligence applications in liver magnetic resonance imaging
    Hill, Charles E.
    Biasiolli, Luca
    Robson, Matthew D.
    Grau, Vicente
    Pavlides, Michael
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (40) : 6825 - 6843
  • [23] Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging
    Pellat, Anna
    Barat, Maxime
    Coriat, Romain
    Soyer, Philippe
    Dohan, Anthony
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (01) : 24 - 36
  • [24] Articles That Use Artificial Intelligence for Ultrasound: A Reader's Guide
    Kuang, Ming
    Hu, Hang-Tong
    Li, Wei
    Chen, Shu-Ling
    Lu, Xiao-Zhou
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [25] Artificial intelligence-powered dentistry: Probing the potential, challenges, and ethicality of artificial intelligence in dentistry
    Rahim, Abid
    Khatoon, Rabia
    Khan, Tahir Ali
    Syed, Kawish
    Khan, Ibrahim
    Khalid, Tamsal
    Khalid, Balaj
    [J]. DIGITAL HEALTH, 2024, 10
  • [26] Techniques Evaluation of Artificial Intelligence Performance
    Kalpathy-Cramer, Jayashree
    Patel, Jay B.
    Bridge, Christopher
    Chang, Ken
    [J]. RADIOLOGIC CLINICS OF NORTH AMERICA, 2021, 59 (06) : 941 - 954
  • [27] Artificial intelligence in ophthalmology Guidelines for physicians for the critical evaluation of studies
    Pfau, Maximilian
    Walther, Guenther
    von der Emde, Leon
    Berens, Philipp
    Faes, Livia
    Fleckenstein, Monika
    Heeren, Tjebo F. C.
    Kortuem, Karsten
    Kuenzel, Sandrine H.
    Mueller, Philipp L.
    Maloca, Peter M.
    Waldstein, Sebastian M.
    Wintergerst, Maximilian W. M.
    Schmitz-Valckenberg, Steffen
    Finger, Robert P.
    Holz, Frank G.
    [J]. OPHTHALMOLOGE, 2020, 117 (10): : 973 - 988
  • [28] Current applications of algorithmic artificial intelligence in interventional radiology: A review of the literature
    O'Brien, Andrew J.
    Vrazas, John, I
    Clements, Warren
    [J]. JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2024, 68 (02) : 194 - 207
  • [29] Opportunities and challenges for the application of artificial intelligence paradigms into the management of endemic viral infections: The example of Chronic Hepatitis C Virus
    Farrag, Ahmed N.
    Kamel, Ahmed M.
    El-Baraky, Iman A.
    [J]. REVIEWS IN MEDICAL VIROLOGY, 2024, 34 (02)
  • [30] The application of artificial intelligence in nuclear cardiology
    Otaki, Yuka
    Miller, Robert J. H.
    Slomka, Piotr J.
    [J]. ANNALS OF NUCLEAR MEDICINE, 2022, 36 (02) : 111 - 122