GA2 INDEX OF SOME GRAPH OPERATIONS

被引:11
作者
Fath-Tabar, G. H. [1 ]
Hamzeh, A. [1 ]
Hossein-Zadeh, S. [1 ]
机构
[1] Univ Kashan, Dept Math, Fac Sci, Kashan 8731751167, Iran
关键词
GA(2) index; Szeged index; C-4-nanotorus; Cartesian product; join; composition; corona; WIENER INDEX; PI INDEXES; VERTEX;
D O I
10.2298/FIL1001021F
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph. For e = uv is an element of E(G), n(u)(e) is the number of vertices of G lying closer to u than to v and n(v)(e) is the number of vertices of G lying closer to v than u. The GA(2) index of G is defined as Sigma(uv is an element of E(G)) 2 root n(u)(e)n(v)(e)/n(u)(e)+n(v)(e) . We explore here some mathematical properties and present explicit formulas for this new index under several graph operations.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 25 条
[1]  
ASHRAFI AR, COMPUTING ZAGR UNPUB
[2]  
ASHRAFI AR, ZAGREB COINDIC UNPUB
[3]   A new geometric-arithmetic index [J].
Fath-Tabar, Gholamhossein ;
Furtula, Boris ;
Gutman, Ivan .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 47 (01) :477-486
[4]  
FATHTABAR GH, ASHRAFI SOME INEQUAL, P145
[5]  
Godsil C., 1993, Algebraic Combinatorics, V6
[6]   ON THE WIENER INDEX OF A GRAPH [J].
GRAOVAC, A ;
PISANSKI, T .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 8 (1-3) :53-62
[7]  
Harary F., 1969, Graph Theory
[8]  
HOSSEINZADEH S, WIENER TYPE IN PRESS
[9]  
Imrich W, 2000, WIL INT S D
[10]  
Jantschi L., 2001, MOL TOPOLOGY