Schrodinger-Maxwell systems on non-compact Riemannian manifolds

被引:11
作者
Farkas, Csaba [1 ]
Kristaly, Alexandru [2 ,3 ]
机构
[1] Sapientia Univ, Dept Math & Informat, Targu Mures, Romania
[2] Univ Babes Bolyai, Dept Econ, R-3400 Cluj Napoca, Romania
[3] Obuda Univ, Inst Appl Math, H-1034 Budapest, Hungary
关键词
Schrodinger-Maxwell system; Riemannian manifold; Non-compact; Isometry; Existence; Multiplicity; KLEIN-GORDON-MAXWELL; SYMMETRIC CRITICALITY; FINSLER GEOMETRY; EQUATIONS; PRINCIPLE;
D O I
10.1016/j.nonrwa.2016.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study nonlinear Schrodinger-Maxwell systems on n-dimensional non-compact Riemannian manifolds of Hadamard type, 3 <= n <= 5. The main difficulty resides in the lack of compactness which is recovered by exploring suitable isometric actions of the Hadamard manifolds. By combining variational arguments, some existence, uniqueness and multiplicity of isometry-invariant weak solutions are established for the Schrodinger-Maxwell system depending on the behavior of the nonlinear term. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:473 / 491
页数:19
相关论文
共 35 条