Majorization and additivity for multimode bosonic Gaussian channels

被引:32
作者
Giovannetti, V. [1 ,2 ]
Holevo, A. S. [3 ]
Mari, A. [1 ,2 ]
机构
[1] Scuola Normale Super Pisa, NEST, Pisa, Italy
[2] CNR, Ist Nanosci, I-56100 Pisa, Italy
[3] RAS, VA Steklov Math Inst, Moscow 117901, Russia
关键词
quantum information theory; bosonic Gaussian communication channel; classical capacity; gauge invariance; minimal output entropy; Gaussian optimizer; additivity; ENTROPY CONJECTURE; PROOF;
D O I
10.1007/s11232-015-0262-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain a multimode extension of the majorization theorem for bosonic Gaussian channels, in particular, giving sufficient conditions under which the Glauber coherent states are the only minimizers for concave functionals of the output state of such a channel. We discuss direct implications of this multimode majorization for the positive solution of the famous additivity problem in the case of Gaussian channels. In particular, we prove the additivity of the output R,nyi entropies of arbitrary order p > 1. Finally, we present an alternative, more direct derivation of a majorization property of the Husimi function established by Lieb and Solovej.
引用
收藏
页码:284 / 293
页数:10
相关论文
共 11 条
[1]  
Berezin F A., 1972, Math. USSR Sb, V17, P269, DOI [10.1070/SM1972v017n02ABEH001504, DOI 10.1070/SM1972V017N02ABEH001504]
[2]  
Berezin FA., 1972, MATH USSR IZV, V6, P1117, DOI 10.1070/IM1972v006n05ABEH001913
[3]   Additivity properties of a Gaussian channel [J].
Giovannetti, V ;
Lloyd, S .
PHYSICAL REVIEW A, 2004, 69 (06) :062307-1
[4]  
Giovannetti V., 2014, COMMUN MATH PHYS
[5]  
Holevo A. S., 2003, Probabilistic and Statistical Aspects of Quantum Theory, V2nd
[6]  
Holevo A. S., 2012, DE GRUYTER STUD MATH, V16
[7]   Error exponents for quantum channels with constrained inputs [J].
Holevo, AS ;
Sohma, M ;
Hirota, O .
REPORTS ON MATHEMATICAL PHYSICS, 2000, 46 (03) :343-358
[8]   PROOF OF AN ENTROPY CONJECTURE OF WEHRL [J].
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 62 (01) :35-41
[9]   Proof of an entropy conjecture for Bloch coherent spin states and its generalizations [J].
Lieb, Elliott H. ;
Solovej, Jan Philip .
ACTA MATHEMATICA, 2014, 212 (02) :379-398
[10]   Quantum state majorization at the output of bosonic Gaussian channels [J].
Mari, A. ;
Giovannetti, V. ;
Holevo, A. S. .
NATURE COMMUNICATIONS, 2014, 5