Anthropogenic CO2 emissions from a megacity in the Yangtze River Delta of China

被引:21
作者
Hu, Cheng [1 ,2 ,3 ]
Liu, Shoudong [1 ,2 ]
Wang, Yongwei [1 ,2 ]
Zhang, Mi [1 ,2 ]
Xiao, Wei [1 ,2 ]
Wang, Wei [1 ,2 ]
Xu, Jiaping [1 ,4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Yale NUIST Ctr Atmospher Environm, Int Joint Lab Climate & Environm Change ILCEC, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, CIC FEMD, Minist Educ KLME, Key Lab Meteorol Disaster, Nanjing 210044, Jiangsu, Peoples R China
[3] Univ Minnesota Twin Cities, Dept Soil Water & Climate, Soil Sci Room 331,1991 Upper Buford Circle, St Paul, MN 55108 USA
[4] China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing 210009, Jiangsu, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Anthropogenic CO2 emissions; Megacity; WRF-STILT model; Tall tower observations; Yangtze River Delta; China; FOSSIL-FUEL COMBUSTION; CARBON-DIOXIDE; ATMOSPHERIC CO2; CONCENTRATION FOOTPRINT; ISOTOPIC COMPOSITION; TRANSPORT; IMPACTS; METHANE; MODELS; FLUXES;
D O I
10.1007/s11356-018-2325-3
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anthropogenic CO2 emissions from cities represent a major source contributing to the global atmospheric CO2 burden. Here, we examined the enhancement of atmospheric CO2 mixing ratios by anthropogenic emissions within the Yangtze River Delta (YRD), China, one of the world's most densely populated regions (population greater than 150 million). Tower measurements of CO2 mixing ratios were conducted from March 2013 to August 2015 and were combined with numerical source footprint modeling to help constrain the anthropogenic CO2 emissions. We simulated the CO2 enhancements (i.e., fluctuations superimposed on background values) for winter season (December, January, and February). Overall, we observed mean diurnal variation of CO2 enhancement of 23.5 similar to 49.7 mu mol mol(-1), 21.4 similar to 52.4 mu mol mol(-1), 28.1 similar to 55.4 mu mol mol(-1), and 29.5 similar to 42.4 mu mol mol(-1) in spring, summer, autumn, and winter, respectively. These enhancements were much larger than previously reported values for other countries. The diurnal CO2 enhancements reported here showed strong similarity for all 3 years of the study. Results from source footprint modeling indicated that our tower observations adequately represent emissions from the broader YRD area. Here, the east of Anhui and the west of Jiangsu province contributed significantly more to the anthropogenic CO2 enhancement compared to the other sectors of YRD. The average anthropogenic CO2 emission in 2014 was 0.162 (+/- 0.005) mg m(-2) s(-1) and was 7 +/- 3% higher than 2010 for the YRD. Overall, our emission estimates were significantly smaller (9.5%) than those estimated (0.179 mg m(-2) s(-1)) from the EDGAR emission database.
引用
收藏
页码:23157 / 23169
页数:13
相关论文
共 49 条
[1]   Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2 [J].
Ahmadov, R. ;
Gerbig, C. ;
Kretschmer, R. ;
Koerner, S. ;
Roedenbeck, C. ;
Bousquet, P. ;
Ramonet, M. .
BIOGEOSCIENCES, 2009, 6 (05) :807-817
[2]  
[Anonymous], J GEOPHYS RES ATMOS
[3]  
[Anonymous], 2014, CLIMATE CHANGE 2014, V80, P1
[4]  
[Anonymous], ANN REPORT SUBMISSIO
[5]   Assessment of an atmospheric transport model for annual inverse estimates of California greenhouse gas emissions [J].
Bagley, Justin E. ;
Jeong, Seongeun ;
Cui, Xinguang ;
Newman, Sally ;
Zhang, Jingsong ;
Priest, Chad ;
Campos-Pineda, Mixtli ;
Andrews, Arlyn E. ;
Bianco, Laura ;
Lloyd, Matthew ;
Lareau, Neil ;
Clements, Craig ;
Fischer, Marc L. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (03) :1901-1918
[6]   Simulation of CO2 concentrations at Tsukuba tall tower using WRF-CO2 tracer transport model [J].
Ballav, Srabanti ;
Patra, Prabir K. ;
Sawa, Yousuke ;
Matsueda, Hidekazu ;
Adachi, Ahoro ;
Onogi, Shigeru ;
Takigawa, Masayuki ;
De, Utpal K. .
JOURNAL OF EARTH SYSTEM SCIENCE, 2016, 125 (01) :47-64
[7]   Evaluating ammonia (NH3) predictions in the NOAA National Air Quality Forecast Capability (NAQFC) using in-situ aircraft and satellite measurements from the CalNex2010 campaign [J].
Bray, Casey D. ;
Battye, William ;
Aneja, Viney P. ;
Tong, Daniel ;
Lee, Pius ;
Tang, Youhua ;
Nowak, John B. .
ATMOSPHERIC ENVIRONMENT, 2017, 163 :65-76
[8]   An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements [J].
Breon, F. M. ;
Broquet, G. ;
Puygrenier, V. ;
Chevallier, F. ;
Xueref-Remy, I. ;
Ramonet, M. ;
Dieudonne, E. ;
Lopez, M. ;
Schmidt, M. ;
Perrussel, O. ;
Ciais, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (04) :1707-1724
[9]   Interactions of the carbon cycle, human activity, and the climate system: a research portfolio [J].
Canadell, Josep G. ;
Ciais, Philippe ;
Dhakal, Shobhakar ;
Dolman, Han ;
Friedlingstein, Pierre ;
Gurney, Kevin R. ;
Held, Alex ;
Jackson, Robert B. ;
Le Quere, Corinne ;
Malone, Elizabeth L. ;
Ojima, Dennis S. ;
Patwardhan, Anand ;
Peters, Glen P. ;
Raupach, Michael R. .
CURRENT OPINION IN ENVIRONMENTAL SUSTAINABILITY, 2010, 2 (04) :301-311
[10]   Assessing scalar concentration footprint climatology and land surface impacts on tall-tower CO2 concentration measurements in the boreal forest of central Saskatchewan, Canada [J].
Chen, Baozhang ;
Zhang, Huifang ;
Coops, Nicholas C. ;
Fu, Dongjie ;
Worthy, Douglas E. J. ;
Xu, Guang ;
Black, T. Andy .
THEORETICAL AND APPLIED CLIMATOLOGY, 2014, 118 (1-2) :115-132