Special relativistic Fourier transformation and convolutions

被引:15
作者
Hitzer, Eckhard [1 ]
机构
[1] Int Christian Univ, Coll Liberal Arts, Osawa 3-10-2, Mitaka, Tokyo 1818585, Japan
关键词
convolution; frequency domain; Mustard convolution; space-time domain; space-time Fourier transform; space-time signals; SQUARE ROOTS OF-1;
D O I
10.1002/mma.5502
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the steerable special relativistic (space-time) Fourier transform (SFT) and relate the classical convolution of the algebra for space-time Cl(3,1)-valued signals over the space-time vector space R3,1, with the (equally steerable) Mustard convolution. A Mustard convolution can be expressed in the spectral domain as the point wise product of the SFTs of the factor functions. In full generality do we express the classical convolution of space-time signals in terms of finite linear combinations of Mustard convolutions and vice versa the Mustard convolution of space-time signals in terms of finite linear combinations of classical convolutions.
引用
收藏
页码:2244 / 2255
页数:12
相关论文
共 28 条
  • [1] Ablamowicz R., 2005, Adv. Appl. Clifford Algebras, V15, P157, DOI DOI 10.1007/S00006-005-0009-9
  • [2] [Anonymous], Creative peace license
  • [3] [Anonymous], 2003, GEOMETRIC ALGEBRA PH, DOI [10.1017/CBO9780511807497, DOI 10.1017/CBO9780511807497]
  • [4] [Anonymous], 2001, LECT NOTE SERIES
  • [5] [Anonymous], 2001, Genesis
  • [6] Clifford W.K., 1878, Am. J. Math., V4, P350, DOI [DOI 10.2307/2369379, 10.2307/2369379]
  • [7] Coxeter H.S. M., 1946, The American Mathematical Monthly, V53, P136, DOI DOI 10.1080/00029890.1946.11991647
  • [8] Connecting spatial and frequency domains for the quaternion Fourier transform
    De Bie, H.
    De Schepper, N.
    Ell, T. A.
    Rubrecht, K.
    Sangwine, S. J.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 581 - 593
  • [9] Einstein A, 1905, ANN PHYS-BERLIN, V17, P891
  • [10] Survival of the fittest theory
    Fodor, Jerry
    Piattelli-Palmarini, Massimo
    [J]. NEW SCIENTIST, 2010, 205 (2746) : 28 - 31