Predicting Antibiotic Resistance in Gram-Negative Bacilli from Resistance Genes

被引:0
作者
Walker, G. Terrance [1 ]
Quan, Julia [1 ]
Higgins, Stephen G. [1 ]
Toraskar, Nikhil [1 ]
Chang, Weizhong [1 ]
Saeed, Alexander [1 ]
Sapiro, Vadim [1 ]
Pitzer, Kelsey [1 ]
Whitfield, Natalie [1 ,6 ]
Lopansri, Bert K. [2 ,3 ]
Motyl, Mary [4 ]
Sahm, Daniel [5 ]
机构
[1] OpGen Inc, Gaithersburg, MD 20878 USA
[2] Intermt Med Ctr, Murray, UT USA
[3] Univ Utah, Salt Lake City, UT USA
[4] Merck & Co Inc, Whitehouse Stn, NJ USA
[5] IHMA Inc, Schaumburg, MA USA
[6] GenMark Diagnost Inc, Carlsbad, CA USA
关键词
PCR; antibiotic resistance; resistance genes;
D O I
10.1128/AAC.02462-18
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
We developed a rapid high-throughput PCR test and evaluated highly antibiotic-resistant clinical isolates of Escherichia coli (n = 2,919), Klebsiella pneumoniae (n = 1,974), Proteus mirabilis (n = 1,150), and Pseudomonas aeruginosa (n = 1,484) for several antibiotic resistance genes for comparison with pheno-typic resistance across penicillins, cephalosporins, carbapenems, aminoglycosides, trimethoprim-sulfamethoxazole, fluoroquinolones, and macrolides. The isolates originated from hospitals in North America (34%), Europe (23%), Asia (13%), South America (12%), Africa (7%), or Oceania (1%) or were of unknown origin (9%). We developed statistical methods to predict phenotypic resistance from resistance genes for 49 antibiotic-organism combinations, including gentamicin, tobramycin, ciprofloxacin, levofloxacin, trimethoprim-sulfamethoxazole, ertapenem, imipenem, cefazolin, cefepime, cefotaxime, ceftazidime, ceftriaxone, ampicillin, and aztreonam. Average positive predictive values for genotypic prediction of phenotypic resistance were 91% for E. coli, 93% for K. pneumoniae, 87% for P. mirabilis, and 92% for P. aeruginosa across the various antibiotics for this highly resistant cohort of bacterial isolates.
引用
收藏
页数:9
相关论文
共 13 条
  • [11] Pancholi P, 2018, J CLIN MICROBIOL, V56, DOI [10.1128/JCM.01329-17, 10.1128/jcm.01329-17]
  • [12] Mycobacterium tuberculosis resistance prediction and lineage classification from genome sequencing: comparison of automated analysis tools
    Schleusener, Viola
    Koser, Claudio U.
    Beckert, Patrick
    Niemann, Stefan
    Feuerriegel, Silke
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [13] Predicting antimicrobial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data
    Stoesser, N.
    Batty, E. M.
    Eyre, D. W.
    Morgan, M.
    Wyllie, D. H.
    Elias, C. Del Ojo
    Johnson, J. R.
    Walker, A. S.
    Peto, T. E. A.
    Crook, D. W.
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2013, 68 (10) : 2234 - 2244