Mesoscopic Moment Equations for Heat Conduction: Characteristic Features and Slow-Fast Mode Decomposition

被引:6
作者
Bergamasco, Luca [1 ]
Alberghini, Matteo [1 ]
Fasano, Matteo [1 ]
Cardellini, Annalisa [1 ]
Chiavazzo, Eliodoro [1 ]
Asinari, Pietro [1 ]
机构
[1] Politecn Torino, Dept Energy, Corso Duca Abruzzi 24, I-10129 Turin, Italy
来源
ENTROPY | 2018年 / 20卷 / 02期
关键词
heat conduction; mesoscopic models; kinetic theory; Cattaneo equation; Extended Irreversible Thermodynamics; THERMAL TRANSPORT; DIFFUSION; DAMAGE;
D O I
10.3390/e20020126
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we derive different systems of mesoscopic moment equations for the heat-conduction problem and analyze the basic features that they must hold. We discuss two-and three-equation systems, showing that the resulting mesoscopic equation from two-equation systems is of the telegraphist's type and complies with the Cattaneo equation in the Extended Irreversible Thermodynamics Framework. The solution of the proposed systems is analyzed, and it is shown that it accounts for two modes: a slow diffusive mode, and a fast advective mode. This latter additional mode makes them suitable for heat transfer phenomena on fast time-scales, such as high-frequency pulses and heat transfer in small-scale devices. We finally show that, if proper initial conditions are provided, the advective mode disappears, and the solution of the system tends asymptotically to the transient solution of the classical parabolic heat-conduction equation.
引用
收藏
页数:16
相关论文
共 44 条
  • [1] [Anonymous], 1984, RATIONAL THERMODYNAM
  • [2] Thermal transmittance in graphene based networks for polymer matrix composites
    Bigdeli, Masoud Bozorg
    Fasano, Matteo
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2017, 117 : 98 - 105
  • [3] Nanoscale thermal transport. II. 2003-2012
    Cahill, David G.
    Braun, Paul V.
    Chen, Gang
    Clarke, David R.
    Fan, Shanhui
    Goodson, Kenneth E.
    Keblinski, Pawel
    King, William P.
    Mahan, Gerald D.
    Majumdar, Arun
    Maris, Humphrey J.
    Phillpot, Simon R.
    Pop, Eric
    Shi, Li
    [J]. APPLIED PHYSICS REVIEWS, 2014, 1 (01):
  • [4] Nanoscale thermal transport
    Cahill, DG
    Ford, WK
    Goodson, KE
    Mahan, GD
    Majumdar, A
    Maris, HJ
    Merlin, R
    Phillpot, SR
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) : 793 - 818
  • [5] Thermal transport phenomena in nanoparticle suspensions
    Cardellini, Annalisa
    Fasano, Matteo
    Bigdeli, Masoud Bozorg
    Chiavazzo, Eliodoro
    Asinari, Pietro
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (48)
  • [6] Cattaneo C., 1948, Atti Sem. Mat. Fis. Univ. Modena, V3, P83, DOI [10.1007/978-3-642-11051-1_5, DOI 10.1007/978-3-642-11051-1_5]
  • [7] Chen G, 2001, PHYS REV LETT, V86, P2297, DOI 10.1103/PhysRevLett86.2297
  • [8] A semiclassical two-temperature model for ultrafast laser heating
    Chen, JK
    Tzou, DY
    Beraun, JE
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (1-2) : 307 - 316
  • [9] Non-Fourier Heat Transfer with Phonons and Electrons in a Circular Thin Layer Surrounding a Hot Nanodevice
    Cimmelli, Vito Antonio
    Carlomagno, Isabella
    Sellitto, Antonio
    [J]. ENTROPY, 2015, 17 (08) : 5157 - 5170
  • [10] Different Thermodynamic Theories and Different Heat Conduction Laws
    Cimmelli, Vito Antonio
    [J]. JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2009, 34 (04) : 299 - 332