Statistical inference based on a new weighted likelihood approach

被引:1
作者
Majumder, Suman [2 ]
Biswas, Adhidev [1 ]
Roy, Tania [3 ]
Bhandari, Subir Kumar [1 ]
Basu, Ayanendranath [1 ]
机构
[1] Indian Stat Inst, Interdisciplinary Stat Res Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, WB, India
[2] North Carolina State Univ, Dept Stat, 2311 Stinson Dr, Raleigh, NC 27695 USA
[3] Novartis Healthcare Private Ltd, Hyderabad, India
关键词
Asymptotic efficiency; Influence function; Robustness; Robust regression; Weighted likelihood; ROBUST ESTIMATION; REGRESSION; EFFICIENCY; EQUATIONS; LOCATION; MODELS;
D O I
10.1007/s00184-020-00778-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss a new weighted likelihood method for robust parametric estimation. The method is motivated by the need for generating a simple estimation strategy which provides a robust solution that is simultaneously fully efficient when the model is correctly specified. This is achieved by appropriately weighting the score function at each observation in the maximum likelihood score equation. The weight function determines the compatibility of each observation with the model in relation to the remaining observations and applies a downweighting only if it is necessary, rather than automatically downweighting a proportion of the observations all the time. This allows the estimators to retain full asymptotic efficiency at the model. We establish all the theoretical properties of the proposed estimators and substantiate the theory developed through simulation and real data examples. Our approach provides an alternative to the weighted likelihood method of Markatou et al. (J Stat Plan Inference 57(2):215-232, 1997; J Am Stat Assoc 93(442):740-750, 1998).
引用
收藏
页码:97 / 120
页数:24
相关论文
共 31 条