UNIQUENESS SETS FOR MINIMIZATION FORMULAS

被引:0
作者
Fujita, Yasuhiro [1 ]
Ishii, Hitoshi [2 ,3 ]
机构
[1] Toyama Univ, Dept Math, Toyama 9308555, Japan
[2] Waseda Univ, Dept Math, Shinjuku Ku, Tokyo 1698050, Japan
[3] King Abdulaziz Univ, Dept Math, Jeddah 2158, Saudi Arabia
关键词
HAMILTON-JACOBI EQUATIONS; AUBRY-MATHER THEORY; CONVEX HAMILTONIANS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider minimization formulas which arise typically in optimal control and weak KAM theory for Hamilton-Jacobi equations. Given a minimization formula, we define a uniqueness set for the formula, which replaces the original region of minimization without changing its values. Our goal is to provide a necessary and sufficient condition that a given set be a uniqueness set. We also provide a characterization of the existence of a minimal uniqueness set with respect to set inclusion.
引用
收藏
页码:579 / 588
页数:10
相关论文
共 13 条
[1]  
[Anonymous], 1994, MATH APPL
[2]  
Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
[3]   The asymptotic behaviour of solutions of the forced Burgers equation on the circle [J].
Bernard, P .
NONLINEARITY, 2005, 18 (01) :101-124
[4]  
Camilli F, 2007, DISCRETE CONT DYN-A, V17, P807
[5]   PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians [J].
Fathi, A ;
Siconolfi, A .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 22 (02) :185-228
[6]   Existence of C1 critical subsolutions of the Hamilton-Jacobi equation [J].
Fathi, A ;
Siconolfi, A .
INVENTIONES MATHEMATICAE, 2004, 155 (02) :363-388
[7]  
Fathi A., Weak KAM theorem in Lagrangian dynamics
[8]  
Fathi A., 1997, C R ACAD SCI PARIS 1, V324, P1034
[9]  
Fleming W. H., 1975, Applications of Mathematics, V1
[10]  
Fujita Y., 2008, GAKUTO INT SER MATH, V30, P89