Quantum Field Theoretical Approach to the Electrical Conductivity of Graphene

被引:0
作者
Klimchitskaya, Galina L. [1 ,2 ]
Mostepanenko, Vladimir M. [1 ,2 ]
Petrov, Viktor M. [2 ]
机构
[1] Russian Acad Sci, Cent Astron Observ Pulkovo, St Petersburg 196140, Russia
[2] Peter Great St Petersburg Polytech Univ, Inst Phys Nanotechnol & Telecommun, St Petersburg 195251, Russia
来源
INTERNET OF THINGS, SMART SPACES, AND NEXT GENERATION NETWORKS AND SYSTEMS, NEW2AN 2016/USMART 2016 | 2016年 / 9870卷
关键词
Graphene; Electrical conductivity; Polarization tensor; Nanocommunications;
D O I
10.1007/978-3-319-46301-8_61
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The longitudinal and transverse electrical conductivities of graphene are calculated at both zero and nonzero temperature starting from the first principles of thermal quantum field theory using the polarization tensor in (2+1)-dimensional space-time. An expression for the universal conductivity of graphene found previously using different phenomenological approaches is confirmed. Both exact and approximate asymptotic expressions for the real and imaginary parts of the conductivity of graphene are derived and compared with the results of numerical computations. The obtained results can be used in numerous applications of graphene, such as in optical detectors, transparent electrodes and nanocommunications.
引用
收藏
页码:699 / 707
页数:9
相关论文
共 41 条
[1]   Enhanced Casimir effect for doped graphene [J].
Bordag, M. ;
Fialkovskiy, I. ;
Vassilevich, D. .
PHYSICAL REVIEW B, 2016, 93 (07)
[2]   Quantum field theoretical description for the reflectivity of graphene [J].
Bordag, M. ;
Klimchitskaya, G. L. ;
Mostepanenko, V. M. ;
Petrov, V. M. .
PHYSICAL REVIEW D, 2015, 91 (04)
[3]   Thermal Casimir effect in the interaction of graphene with dielectrics and metals [J].
Bordag, M. ;
Klimchitskaya, G. L. ;
Mostepanenko, V. M. .
PHYSICAL REVIEW B, 2012, 86 (16)
[4]   Casimir interaction between a perfect conductor and graphene described by the Dirac model [J].
Bordag, M. ;
Fialkovsky, I. V. ;
Gitman, D. M. ;
Vassilevich, D. V. .
PHYSICAL REVIEW B, 2009, 80 (24)
[5]   Numerical study of the conductivity of graphene monolayer within the effective field theory approach [J].
Buividovich, P. V. ;
Luschevskaya, E. V. ;
Pavlovsky, O. V. ;
Polikarpov, M. I. ;
Ulybyshev, M. V. .
PHYSICAL REVIEW B, 2012, 86 (04)
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Thermal Casimir-Polder interaction of different atoms with graphene [J].
Chaichian, M. ;
Klimchitskaya, G. L. ;
Mostepanenko, V. M. ;
Tureanu, A. .
PHYSICAL REVIEW A, 2012, 86 (01)
[8]   U(1) x SU(2) gauge invariance leading to charge and spin conductivity of Dirac fermions in graphene [J].
Dartora, C. A. ;
Cabrera, G. G. .
PHYSICAL REVIEW B, 2013, 87 (16)
[9]   Space-time dispersion of graphene conductivity [J].
Falkovsky, L. A. ;
Varlamov, A. A. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (04) :281-284
[10]   Optical far-infrared properties of a graphene monolayer and multilayer [J].
Falkovsky, L. A. ;
Pershoguba, S. S. .
PHYSICAL REVIEW B, 2007, 76 (15)