L2-decay estimate for the dissipative nonlinear Schrodinger equation in the Gevrey class

被引:0
作者
Sato, Takuya [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Dissipative nonlinear Schrodinger equation; Global solution; L-2-decay; Analyticity; Gevrey space; LONG-RANGE SCATTERING; LARGE TIME BEHAVIOR; ASYMPTOTIC-BEHAVIOR; DECAY-RATES; SYSTEM;
D O I
10.1007/s00013-020-01483-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the dissipative nonlinear Schrodinger equation with a cubic nonlinear term lambda vertical bar u vertical bar(2)u where lambda is an element of C with Im lambda< 0. We prove the global existence of a unique solution and obtain the uniform estimate in the Gevrey class. Using the uniform regularity estimate, we show the L-2-decay rate for the solution which has the Gevrey regularity.
引用
收藏
页码:575 / 588
页数:14
相关论文
共 21 条
[2]   THE CAUCHY-PROBLEM FOR THE NONLINEAR SCHRODINGER-EQUATION IN H-1 [J].
CAZENAVE, T ;
WEISSLER, FB .
MANUSCRIPTA MATHEMATICA, 1988, 61 (04) :477-494
[3]  
Cazenave T., COURANT LECT NOTES M, V10
[4]   LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER AND HARTREE-EQUATIONS IN SPACE DIMENSION N-GREATER-THAN-OR-EQUAL-TO-2 [J].
GINIBRE, J ;
OZAWA, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (03) :619-645
[5]   Asymptotics for large time of solutions to the nonlinear Schrodinger and Hartree equations [J].
Hayashi, N ;
Naumkin, PI .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (02) :369-389
[6]  
HAYASHI N, 1988, ANN I H POINCARE-PHY, V48, P17
[7]   Time Decay for Nonlinear Dissipative Schrodinger Equations in Optical Fields [J].
Hayashi, Nakao ;
Li, Chunhua ;
Naumkin, Pavel I. .
ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
[8]   Asymptotic behavior for solutions to the dissipative nonlinear Scrodinger equations with the fractional Sobolev space [J].
Hoshino, Gaku .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (11)
[9]  
Katayama S, 2014, DIFFER INTEGRAL EQU, V27, P301
[10]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980