Nesterov-Based Alternating Optimization for Nonnegative Tensor Factorization: Algorithm and Parallel Implementation

被引:32
作者
Liavas, Athanasios P. [1 ]
Kostoulas, Georgios [1 ]
Lourakis, Georgios [1 ]
Huang, Kejun [2 ]
Sidiropoulos, Nicholas D. [2 ]
机构
[1] Tech Univ Crete, Sch Elect & Comp Engn, Khania 73100, Greece
[2] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Tensors; nonnegative tensor factorization; optimal first-order optimization algorithms; parallel algorithms; DECOMPOSITIONS; SEARCH; LINE;
D O I
10.1109/TSP.2017.2777399
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of nonnegative tensor factorization. Our aim is to derive an efficient algorithm that is also suitable for parallel implementation. We adopt the alternating optimization framework and solve each matrix nonnegative least-squares problem via a Nesterov-type algorithm for strongly convex problems. We describe a parallel implementation of the algorithm and measure the attained speedup in a multicore computing environment. It turns out that the derived algorithm is a competitive candidate for the solution of very large-scale dense nonnegative tensor factorization problems.
引用
收藏
页码:944 / 953
页数:10
相关论文
共 27 条
[1]  
Andersson C.A., 2000, N WAY TOOLBOX MATLAB
[2]  
[Anonymous], 2008, Applied Multiway Data Analysis
[3]  
[Anonymous], 2003, Introduction to Parallel Computing
[4]  
[Anonymous], 2009, NONNEGATIVE MATRIX T
[5]  
[Anonymous], 2016, TENSORLAB 30
[6]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[7]   NeNMF: An Optimal Gradient Method for Nonnegative Matrix Factorization [J].
Guan, Naiyang ;
Tao, Dacheng ;
Luo, Zhigang ;
Yuan, Bo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) :2882-2898
[8]  
Guennebaud Gael, 2010, Eigen v3
[9]   A Flexible and Efficient Algorithmic Framework for Constrained Matrix and Tensor Factorization [J].
Huang, Kejun ;
Sidiropoulos, Nicholas D. ;
Liavas, Athanasios P. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (19) :5052-5065
[10]   Parallel algorithms for tensor completion in the CP format [J].
Karlsson, Lars ;
Kressner, Daniel ;
Uschmajew, Andre .
PARALLEL COMPUTING, 2016, 57 :222-234