Projective varieties of maximal sectional regularity

被引:5
作者
Brodmann, Markus [1 ]
Lee, Wanseok [2 ]
Park, Euisung [3 ]
Schenzel, Peter [4 ]
机构
[1] Univ Zurich, Inst Math, Winterthurerstr 190, Zurich, Switzerland
[2] Pukyong Natl Univ, Dept Appl Math, Yongso Ro 45, Busan 608737, South Korea
[3] Korea Univ, Dept Math, Seoul 136701, South Korea
[4] Univ Halle Wittenberg, Inst Informat, Von Seckendorff Pl 1, D-06120 Halle, Saale, Germany
基金
新加坡国家研究基金会;
关键词
RATIONAL NORMAL SCROLLS; SMOOTH SURFACES; CASTELNUOVO; CURVES; EQUATIONS; SYZYGIES; DIVISORS;
D O I
10.1016/j.jpaa.2016.05.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study projective varieties X subset of P-r of dimension n >= 2, of codimension c >= 3 and of degree d >= c+3 that are of maximal sectional regularity, i.e. varieties for which the Castelnuovo-Mumford regularity reg(C) of a general linear curve section is equal to d-c+1, the maximal possible value (see [10]). As one of the main results we classify all varieties of maximal sectional regularity. If X is a variety of maximal sectional regularity, then either (a) it is a divisor on a rational normal (n + 1)-fold scroll Y subset of Pn+3 or else (b) there is an n-dimensional linear subspace F subset of P-r such that X boolean AND F subset of F is a hypersurface of degree d-c+1. Moreover, suppose that n = 2 or the characteristic of the ground field is zero. Then in case (b) we obtain a precise description of X as a birational linear projection of a rational normal n-fold scroll. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 118
页数:21
相关论文
共 21 条
[1]  
[Anonymous], 1966, ANN MATH STUD
[2]  
Bertin MA, 2002, J REINE ANGEW MATH, V545, P167
[3]   On projective curves of maximal regularity [J].
Brodmann, M ;
Schenzel, P .
MATHEMATISCHE ZEITSCHRIFT, 2003, 244 (02) :271-289
[4]  
Brodmann M., SURFACES MAXIM UNPUB
[5]   Projective curves with maximal regularity and applications to syzygies and surfaces [J].
Brodmann, Markus ;
Schenzel, Peter .
MANUSCRIPTA MATHEMATICA, 2011, 135 (3-4) :469-495
[6]  
Castelnuovo G., 1893, REND CIRC MAT PALERM, V7, P89
[7]   LINEAR FREE RESOLUTIONS AND MINIMAL MULTIPLICITY [J].
EISENBUD, D ;
GOTO, S .
JOURNAL OF ALGEBRA, 1984, 88 (01) :89-133
[8]  
Ferraro R, 2001, LECT NOTES PURE APPL, V217, P183
[9]  
Flenner H., 1990, SPRINGER MONOGRAPHS
[10]  
Fujita T., 1990, London Math. Soc. Lecture Notes Series, V155