GROUND STATES OF COUPLED CRITICAL CHOQUARD EQUATIONS WITH WEIGHTED POTENTIALS

被引:5
作者
Zhu, Gaili [1 ]
Duan, Chunping [1 ]
Zhang, Jianjun [1 ]
Zhang, Huixing [2 ]
机构
[1] Chongqing Jiaotong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[2] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
关键词
ground states; Choquard equations; Hardy-Littlewood-Sobolev inequality; lower critical exponent; POSITIVE SOLUTIONS; HARTREE SYSTEM; EXISTENCE;
D O I
10.7494/OpMath.2022.42.2.337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the following coupled Choquard type system with weighted potentials {-Delta u + V-1(x)u = mu(1)(I-alpha*[Q(x)vertical bar u vertical bar(N+alpha/N)])Q(x)vertical bar u vertical bar(alpha/N-1)u + beta(I-alpha*[Q(x)vertical bar v vertical bar(N+alpha/N)])Q(x)vertical bar u vertical bar(alpha/N-1)u, {-Delta v + V-2(x)v = mu(2)(I-alpha*[Q(x)vertical bar v vertical bar(N+alpha/N)])Q(x)vertical bar v vertical bar(alpha/N-1)v + beta(I-alpha*[Q(x)vertical bar u vertical bar(N+alpha/N)])Q(x)vertical bar v vertical bar(alpha/N-1)v, u, v is an element of H-1 (R-N), where N >= 3, mu(1), mu(2), beta > 0 and V-1(x), V-2(x) are nonnegative functions. Via the variational approach, one positive ground state solution of this system is obtained under some certain assumptions on V-1(x), V-2(x) and Q(x). Moreover, by using Hardy's inequality and one Pohozaev identity, a non-existence result of non-trivial solutions is also considered.
引用
收藏
页码:337 / 354
页数:18
相关论文
共 28 条
[1]  
Alexandrov AS, 2010, SPRINGER SER SOLID-S, V159, P1, DOI 10.1007/978-3-642-01896-1
[2]  
[Anonymous], 1997, Minimax Theorems
[3]   Groundstates for Choquard type equations with Hardy-Littlewood-Sobolev lower critical exponent [J].
Cassani, Daniele ;
Van Schaftingen, Jean ;
Zhang Jianjun .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (03) :1377-1400
[4]   GROUP INVARIANCE AND POHOZAEV IDENTITY IN MOSER-TYPE INEQUALITIES [J].
Cassani, Daniele ;
Ruf, Bernhard ;
Tarsi, Cristina .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (02)
[5]   Semiclassical states for Choquard type equations with critical growth: critical frequency case [J].
Ding, Yanheng ;
Gao, Fashun ;
Yang, Minbo .
NONLINEARITY, 2020, 33 (12) :6695-6728
[6]   High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents [J].
Gao, Fashun ;
Liu, Haidong ;
Moroz, Vitaly ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 :329-375
[7]   Existence of solutions for critical Choquard equations via the concentration-compactness method [J].
Gao, Fashun ;
Silva, Edcarlos D. ;
Yang, Minbo ;
Zhou, Jiazheng .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) :921-954
[8]   A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality [J].
Gao, Fashun ;
Yang, Minbo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
[9]   The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation [J].
Gao, Fashun ;
Yang, Minbo .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (07) :1219-1242
[10]  
Lieb E.H., 2001, ANALYSIS-UK, V14