Statistical mechanics of the self-gravitating gas in the Tsallis framework

被引:4
作者
Escamilla-Herrera, L. F. [1 ]
Gruber, C. [2 ,3 ]
Pineda-Reyes, V [1 ]
Quevedo, H. [1 ,4 ,5 ,6 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico
[2] Hanse Wissenschaftskolleg Delmenhorst, Delmenhorst, Germany
[3] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
[4] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[5] Univ Roma La Sapienza, ICRA, I-00185 Rome, Italy
[6] Al Farabi Kazakh Natl Univ, Inst Expt & Theoret Phys, Alma Ata, Kazakhstan
关键词
EQUILIBRIUM; TEMPERATURE; CATASTROPHE; SPHERES;
D O I
10.1103/PhysRevE.99.022108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The statistical mechanics of a cloud of particles interacting via their gravitational potentials encounters some issues when the Boltzmann-Gibbs statistics is applied. In this work, we consider the alternative statistical framework of Tsallis and analyze the statistical and thermodynamical implications for a self-gravitating gas, obtaining analytical and convergent expressions for the equation of state and specific heat in the ensembles of constant temperature and constant energy. Although our results are comparable in both ensembles, it turns out that only in the ensemble of constant temperature do the thermodynamic quantities depend explicitly on the Tsallis parameter, indicating that the question of ensemble equivalence for Tsallis statistics must be further reviewed.
引用
收藏
页数:12
相关论文
共 39 条
[21]   STATISTICAL-MECHANICS OF GRAVITATING SYSTEMS [J].
PADMANABHAN, T .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 188 (05) :285-362
[22]   Microcanonical ensemble extensive thermodynamics of Tsallis statistics [J].
Parvan, AS .
PHYSICS LETTERS A, 2006, 350 (5-6) :331-338
[23]   VARIATIONAL METHOD IN GENERALIZED STATISTICAL-MECHANICS [J].
PLASTINO, A ;
TSALLIS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (18) :L893-L896
[24]   STELLAR POLYTROPES AND TSALLIS ENTROPY [J].
PLASTINO, AR ;
PLASTINO, A .
PHYSICS LETTERS A, 1993, 174 (5-6) :384-386
[25]   GENERALIZED STATISTICAL-MECHANICS - EXTENSION OF THE HILHORST FORMULA AND APPLICATION TO THE CLASSICAL IDEAL-GAS [J].
PRATO, D .
PHYSICS LETTERS A, 1995, 203 (04) :165-168
[26]   Self-gravitating stellar systems and non-extensive thermostatistics [J].
Sakagami, M ;
Taruya, A .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2004, 16 (03) :279-292
[27]  
Stanley H.E, 1971, Phase transitions and critical phenomena, V7
[28]   Antonov problem and quasi-equilibrium states in an N-body system [J].
Taruya, A ;
Sakagami, M .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 364 (03) :990-1010
[29]   Long-term evolution of stellar self-gravitating systems away from thermal equilibrium: Connection with nonextensive statistics [J].
Taruya, A ;
Sakagami, M .
PHYSICAL REVIEW LETTERS, 2003, 90 (18) :4
[30]   Gravothermal catastrophe and Tsallis' generalized entropy of self-gravitating systems.: (III).: Quasi-equilibrium structure using normalized q-values [J].
Taruya, A ;
Sakagami, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 322 (1-4) :285-312