Densely Semantically Aligned Person Re-Identification

被引:215
作者
Zhang, Zhizheng [1 ,3 ]
Lan, Cuiling [2 ]
Zeng, Wenjun [2 ]
Chen, Zhibo [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
[3] MSRA, Beijing, Peoples R China
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a densely semantically aligned person re-identification framework. It fundamentally addresses the body misalignment problem caused by pose/viewpoint variations, imperfect person detection, occlusion, etc. By leveraging the estimation of the dense semantics of a person image, we construct a set of densely semantically aligned part images (DSAP-images), where the same spatial positions have the same semantics across different images. We design a two-stream network that consists of a main full image stream (MF-Stream) and a densely semantically-aligned guiding stream (DSAG-Stream). The DSAG-Stream, with the DSAP-images as input, acts as a regulator to guide the MF-Stream to learn densely semantically aligned features from the original image. In the inference, the DSAG-Stream is discarded and only the MF-Stream is needed, which makes the inference system computationally efficient and robust. To the best of our knowledge, we are the first to make use of fine grained semantics to address the mis-alignment problems for re-ID. Our method achieves rank-1 accuracy of 78.9% (new protocol) on the CUHK03 dataset, 90.4% on the CUHK01 dataset, and 95.7% on the Market1501 dataset, outperforming state-of-the-art methods.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 49 条
  • [1] Ahmed Ejaz, 2015, CVPR
  • [2] Almazan Jon, 2018, ARXIV180105339
  • [3] [Anonymous], 2016, CoRR abs/1512.00567, DOI DOI 10.1109/CVPR.2016.308
  • [4] [Anonymous], 2013, ICCV
  • [5] [Anonymous], 2015, ICCV
  • [6] Deep-Person: Learning discriminative deep features for person Re-Identification
    Bai, Xiang
    Yang, Mingkun
    Huang, Tengteng
    Dou, Zhiyong
    Yu, Rui
    Xu, Yongchao
    [J]. PATTERN RECOGNITION, 2020, 98
  • [7] Chen WH, 2017, AAAI CONF ARTIF INTE, P3988
  • [8] Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function
    Cheng, De
    Gong, Yihong
    Zhou, Sanping
    Wang, Jinjun
    Zheng, Nanning
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1335 - 1344
  • [9] Custom Pictorial Structures for Re-identification
    Cheng, Dong Seon
    Cristani, Marco
    Stoppa, Michele
    Bazzani, Loris
    Murino, Vittorio
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
  • [10] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848